Abstract:
Compounds of formula (I) with the meanings of R1, R1′, R2, R2′, X, X′, Y, Y′, m and n as given in claim 1 can be used as paper dyes or direct dyes or for the preparation of ink-jet inks.
Abstract:
A new method for spot dying nylon carpet requires no color theory nor use of a color wheel. The new method is distinguished from prior art methods primarily by the fact that the focus in on the hue of the spot at any given moment during the process, and that primary dye colors are applied in a sequence determined by the color of the spot. The method has been shown to work on both solid-color and multi-color nylon carpets. It is also effective for spot dyeing light-color (off-white) carpets. The method can also be employed to repair stained areas of a carpet by simply bleaching the stained area and redyeing the bleached area. Prior to the redyeing process, the area to be treated is subjected to several rinse and extract steps. A bleach neutralizer is then applied, allowed to remain on the area to be treated for about 5 minutes, then extracted without further rinsing. For most bleached spots, which will have either white, yellow, or orange hues, the redyeing sequence generally begins with dilute primary blue dye. However, if the bleached spot were to have a blue or green hue, the sequence would preferably begin with dilute primary red dye. On the other hand, if the bleached spot were to have a purple or lavender hue, the sequence would preferably begin with dilute primary yellow. Based on the color of the spot, the bleached area is then sprayed with the appropriate dilute primary color dye, which is then vacuum extracted without rinsing. The spray and extract process is repeated until either the desired color is obtained or the slightest tinge away from the color to be matched is observed. For each primary color dye, it is best to under-dye the area rather than over-dye it for the first application of a particular primary color dye. As the spot changes color, the remaining two primary colors are employed in an order as though the redyeing process were just beginning.
Abstract:
The present invention provides a novel manufacturing method for coloring and lustering substance, especially suitable for coloring and lustering a carbonizable substance, without using pigments or dyes. The method utilizes the relationship between heat, gas and time to allow a substance to directly form and change color. The color-forming or color-changing phenomena is due to the natural quantity change effects caused by the heat, gas and time, which comprises at least one kind of color, color series or color and luster change.
Abstract:
A dyeing method for dyeing a plastic lens, a plastic lens obtained by use of the dyeing method, and a dyeing system, a dyeing device, and a dyeing jig for a plastic lens are disclosed. The method includes a producing step of producing a print base body on which a print area is printed with a sublimatable dye by a printer under control of a computer, the printer being previously supplied with the dye; a placing step of placing the print base body and a lens to be dyed so that the print area on the base body is brought into nearly close contact with a lens surface to be dyed; and a transferring step of heating at least the print base body to sublimate the sublimatable dye of the print area, thereby transferring the dye to the lens surface to be dyed.
Abstract:
A method of infusing a dye into the surface of an article formed of a plastic material comprises contacting the surface with a solution including one or more solvents each aggressive to the plastic material, one or more dyes and one or more substances each capable of plasticizing the plastic material. If the plastic material is polycarbonate, then the aggressive solvent may be one or more chlorinated hydrocarbons. The dye may be a photochromic dye, a cosmetic tinting dye, dyes for absorbing infrared, laser and ultraviolet radiation, or combinations thereof. A wide range of plasticizers has been investigated. The article is contacted by the solution for ten seconds to one minute; and nearly all the infused solvent is then evaporated from the article by heating. The use of one or more plasticizers reduces or eliminates bubbling or hazing of the contacted surface during solvent evaporation. The dyed article comprises a surface layer having a depth of the order of magnitude of 100 microns containing one or more dyes, one or more plasticizers and, likely, a trace amount of the one or more aggressive solvents.
Abstract:
Camouflage covering fabricated by the method of attaching dyed jute strands to netting, wherein the netting is placed over an individual or object to be camouflaged. The covering may be formed as an integral garment, such as a hooded poncho, or may be attached to clothing such as a battle dress uniform (BDU) to form a ghillie suit. The covering may be draped over an object such as a weapon, vehicle, equipment, or supplies. The present invention allows for quick, cost-effective creation of realistic three-dimensional camouflage coverings and apparel that are easily portable, naturally frayed in appearance, and securely assembled without the use of loops or snaps.
Abstract:
A process of dyeing a molded article is disclosed. The process entails immersing at least a portion of the article in a dyeing bath, retaining the portion in the bath for a period of time sufficient to allow an amount of dye to diffuse into the article, and removing said article from the bath. The molded article comprises a polymeric resin such as (co)polyester, (co)polycarbonates, acrylonitrile-butadiene-styrene, polyamide, polyurethane, polyalkyl(meth)acrylate, allyldiglycol carbonate and styrene copolymers. The dyeing bath contains in addition to dye, water, a plasticizing agent and a leveling agent.
Abstract:
A dyeing method of dyeing a plastic lens includes: a step of placing the lens in a predetermined position in a vacuum vapor-deposition device; a step of placing a base body to be used for a dyeing operation in the vapor-deposition device, the base body being applied with dyeing solutions each containing a dissolved or fine-grained dispersed sublimatable dye to form a dye application area on the base body, and the base body being arranged so that the dye application area faces the lens without contact therewith; a step of heating the base body under vacuum in the vapor-deposition device, thereby sublimating the dye of the dye application area to vapor-deposit the sublimated dye on the lens; and a step of heating the lens on which the dye has been vapor-deposited at changing heating temperatures, thereby fixing the dye on the lens.
Abstract:
An electrical component and a wall plate have portions of a unitary image thereon such that when assembled, the unitary image is perceived. A thermally conductive collapsible sponge fills the contoured surface features of the electrical component during image transfer such that a high quality image transfer is attained.
Abstract:
Resinous compositions, especially synthetic resins and most especially arylate polymers, contain 2,3-dicyano-1,4-diaminoanthraquinone as a blue dye. Said compositions are characterized by improved weatherability in comparison with compositions containing other blue dyes.