Abstract:
A process for preparing a polyhydric alcohol according to the invention comprises subjecting a polyhydric alcohol compound having protected hydroxy group(s) to microwave irradiation in the presence of basic compound(s) or acid(s) having an acid dissociation exponent (pKa) of −8 to 3 at 25° C. to remove the protecting groups of the hydroxy group of the polyhydric alcohol compound. The invention can provide an industrially advantageous process for preparing polyhydric alcohols by readily removing protecting group(s) from protected hydroxy group(s) of polyhydric alcohol compounds.
Abstract:
A process for producing an aromatic hydroxyl compound alkylated at the ortho position in high yield by subjecting an aromatic hydroxyl compound and an alkyl alcohol to a gas phase catalytic reaction in the presence of a metal oxide catalyst. The aromatic hydroxyl compound is a mixture of a phenol and ortho cresol, and the amount of ortho cresol in the mixture is 0.6 mole or less per 1 mole of phenol.
Abstract:
This invention relates to a method for producing biphenols by oxidative coupling of dialkylphenols which proceeds in two stages using a copper amine complex which is catalytically effective in each stage.
Abstract:
The invention relates to an improved process for the production of 2,3,5-trimethylhydroquinone diesters by rearrangement of 2,6,6-trimethyl-2-cyclohexene-1,4-dione (4-oxoisophorone, ketoisophorone) in the presence of a dissolved, acidic catalyst and an acylating agent, such as for example carboxylic anhydrides or carboxylic acid halides. The 2,3,5-trimethylhydroquinone diester can optionally then be saponified to give free 2,3,5-trimethylhydroquinone (TMHQ), which is a valuable building block in the synthesis of vitamin E.
Abstract:
A method and composition are disclosed for the oxidation of aromatic substrates in the presence of oxygen, a catalyst, a proton source, and a non-gaseous reductant. In a preferred embodiment, benzene is oxidized to phenol in the presence of oxygen, a vanadyl catalyst, trifluoroacetic acid as a proton source, and ferrocene as a reductant. The method is economical, safe, and amenable to commercial scale-up.
Abstract:
New thyroid receptor ligands are provided which have the general formula in which: X is —O—, —S—, —CH2—, —CO—, or —NH—; Y is —(CH2)n— where n is an integer from 1 to 5, or cis- or trans-ethylene; R1 is halogen, trifluoromethyl, or alkyl of 1 to 6 carbons or cycloalkyl of 3 to 7 carbons; R2 and R3 are the same or different and are hydrogen, halogen, alkyl of 1 to 4 carbons or cycloalkyl of 3 to 6 carbons, at least one of R2 and R3 being other than hydrogen; R4 is hydrogen or lower alkyl; R5 is hydrogen or lower alkyl; R6 is carboxylic acid, or esters or prodrugs; R7 is hydrogen or an alkanoyl or an aroyl. In addition, a method is provided for preventing, inhibiting or treating a disease associated with metabolism dysfunction or which is dependent upon the expression of a T3 regulated gene, wherein a compound as described above is administered in a therapeutically effective amount. Examples of such diseases associated with metabolism dysfunction or are dependent upon the expression of a T3 regulated gene include obesity, hypercholesterolemia, atherosclerosis, cardiac arrhythmias, depression, osteoporosis, hypothyroidism, goiter, thyroid cancer as well as glaucoma, congestive heart failure and skin disorders.
Abstract:
By bringing a p-butylphenol compound or m-butylphenol compound in the gas phase into contact with a solid acid catalyst, i.e., a silica-alumina catalyst or alumina catalyst while heating, butyl groups are removed from the butylphenol compound and at the same time, highly purified isobutylene is recovered.
Abstract:
A method of preparing a reduced product by efficiently reducing an unsaturated organic compound by using, as a reducing agent, a trichlorosilane which is industrially cheaply available and is easy to handle, and a reducing agent therefor. A reduced product of an unsaturated organic compound is obtained by mixing the unsaturated organic compound and a trichlorosilane together to reduce the unsaturated organic compound in the presence of a compound that forms a silicon complex having five coordinations upon acting on the trichlorosilane such as an N-formylated product of a secondary amine having not less than 3 carbon atoms. The invention further provides a reducing agent comprising a particular silicon complex.
Abstract:
A method for producing ortho-alkylated phenols comprising reacting phenols represented by the general formula (1) with monohydric or dihydric alcohol in the presence of germanium oxide under conditions in which said alcohol is in the supercritical condition, wherein each of R1, R2, R3, R4 and R5 independently represents a hydrogen atom, or a linear or branched alkyl group having 1 to 10 carbon atoms.
Abstract:
A method and composition are disclosed for the hydroxylation of aromatic substrates in the presence of oxygen, hydrogen, and a catalyst. In a preferred embodiment, benzene is oxidized to phenol in the presence of oxygen, a vanadium catalyst, and hydrogen. The method is economical, safe, and amenable to commercial scale-up.