Abstract:
The invention relates to a skull pot for melting or refining glass or glass ceramics, comprising a pot wall (1), a pot base, and an induction coil (3) which surrounds said pot wall and through which high-frequency energy can be coupled into the contents of the pot. The pot wall is made up of a ring of metal pipes (1.1) which can be connected to a cooling medium, slot-type intermediate chambers being provided between adjacent metal pipes. The pot base has a run-off for the melt. The metal pipes (1.1) that form the pot wall (1) arm short-circuited with each other above the base in order to increase the degree of efficiency of the skull pot and especially, in order to even out the temperature profile of the melt throughout the depth of the melt.
Abstract:
In many engineering production processes, for example glass or glass-ceramic manufacturing processes, liquids, such as glass melts, participate in the processes in which gases are dissolved, which in part form bubbles in the liquid. So that the quality of the final product is not disadvantageously influenced, the liquid, e.g. glass melt, should be refined to remove the bubbles. According to the method of the invention an overpressure acting on the liquid is provided which is such that the internal pressure in the bubbles immediately under the surface of the liquid in a refining chamber is at least as great as the sum of equilibrium pressures of the gases dissolved in the liquid and the sum of the vapor pressure of components evaporating from the liquid. A two stage apparatus is provided which performs a preferred embodiment of the refining method of the invention. This two stage apparatus includes a tower-like comparatively higher low pressure refining chamber (6) and a downstream comparatively lower overpressure refining chamber (1).
Abstract:
Glass raw material is fed to a glass furnace to prepare molten glass. At least one metal compound from one of the following metals: aluminum, titanium, silicon, zinc, magnesium, iron, chromium, cobalt, cerium or calcium is supplied to a foam layer formed on the molten glass to diminish or extinguish the foam layer.
Abstract:
In many engineering production processes, for example glass or glass-ceramic manufacturing processes, liquids, such as glass melts, participate in the processes in which gases are dissolved, which in part form bubbles in the liquid. So that the quality of the final product is not disadvantageously influenced, the liquid, e.g. glass melt, should be refined to remove the bubbles. According to the method of the invention an overpressure acting on the liquid is provided which is such that the internal pressure in the bubbles immediately under the surface of the liquid in a refining chamber is at least as great as the sum of equilibrium pressures of the gases dissolved in the liquid and the sum of the vapor pressure of components evaporating from the liquid. A two stage apparatus is provided which performs a preferred embodiment of the refining method of the invention. This two stage apparatus includes a tower-like comparatively higher low pressure refining chamber (6) and a downstream comparatively lower overpressure refining chamber (1).
Abstract:
Molten glass has a liquid level located at a higher level than lower ends of an uprising pipe and a downfalling. In addition, a contacting portion of the uprising pipe or the downfalling pipe and a brick receiver on an upstream or downstream pit for supporting the uprising or downfalling pipe, or a joint in the brick receiver is filled with sealing material.