摘要:
An article transport vehicle includes an obstacle sensor having a detection area that includes at least the width of the own vehicle and that expands in the advancing direction, controls the travel of the own vehicle, based on as front inter-object distance corresponding to own-vehicle position information indicating a position of the own vehicle and front object position information indicating a position on a track of a front object that is located in front of the own vehicle and whose position on the track is specified, and sets a length of the detection area E along the advancing direction of the obstacle sensor to be variable according to the front inter-object distance such that the length is less than the front inter-object distance.
摘要:
The present disclosure relates to a railway collision protection and safety system having a vehicle device located on rail vehicles at a work zone, a personal protection unit located with rail workers at the work zone, and a dispatcher processor at a control center. An authority limit within the work zone may be determined by the dispatcher processor, and an authority exceeded signal is sent to the rail vehicle when the rail vehicle is determined to exceed the authority limit.
摘要:
A decentralized control of rail vehicles that run in alternating directions on a single-track route, e.g., between two train stations by way of an exclusive right (token). A storage device is arranged at each end of the route, for instance an RFID unit. Only a single exclusive right exists for the route. The exclusive right is either stored in one of the two storage units or carried along by a rail vehicle that is traveling on the route. In the latter case, an additional rail vehicle is effectively prevented from traveling on the route, because none of the storage units can provide the exclusive right, which is being transported between the storage units by the rail vehicle and is occupied by the rail vehicle. The novel concept creates an efficient possibility of decentralized train protection and thus can be implemented significantly more economically than existing centralized train safety approaches.
摘要:
An anti-collision safety control for vehicles travelling on tracks; the control comprises two safety loops per vehicle, linked to two common loops in a central control station. Each vehicle loop comprises control circuits for determining the distance to the next preceding vehicle, for determining a safe stopping distance for the vehicle, and for stopping the vehicle if the distance to the preceding vehicle becomes smaller than the safe stopping distance or if there is a failure of a safety circuit. The distance control circuit comprises a detector for detecting reference points provided along the track, a counter for calculating the distance of a vehicle from a given zero location, and a delay circuit for converting this distance into a position signal timed to a synchronization pulse received by all vehicles. Position signals from all vehicles are transmitted to the central control and back to the vehicles; the distance to an immediately preceding vehicle is determined by comparing the position pulses.
摘要:
For data communication in the form of messages between railways vehicles moving over a same track, short identical emissions at random times by modulating a directional microwave beam whose angular opening is sufficient in the horizontal direction for maintaining communication in bends of said track and switches and in the vertical direction for maintaining communication during changes in the profile of the track.
摘要:
A railway collision protection and safety system has a vehicle device located on rail vehicles at a work zone, a personal protection unit located with rail workers at the work zone, and a dispatcher processor at a control center. An authority limit within the work zone may be determined by the dispatcher processor, and an authority exceeded signal is sent to the rail vehicle when the rail vehicle is determined to exceed the authority limit.
摘要:
A system includes a locator device and one or more processors operably connected to the locator device. The locator device determines a trailing distance between a trailing vehicle system that travels along a route and a leading vehicle system that travels along the route ahead of the trailing vehicle system in a same direction of travel. The one or more processors compare the trailing distance to a first proximity distance relative to the leading vehicle system. In response to the trailing distance being less than the first proximity distance, the one or more processors set a permitted power output limit for the trailing vehicle system to be less than a maximum achievable power output for the trailing vehicle system, the permitted power output limit being set based on a power-to-weight ratio of the leading vehicle system.