Abstract:
The present invention provides a method and apparatus for cleaning a coating material from a surface of a print substrate mounted on the plate cylinder of a printing press using an ultrasonic acoustic cleaning apparatus. The method comprises: applying a cleaning solution onto a surface of the print substrate, rotating the plate cylinder to displace the print substrate under an ultrasonic acoustic cleaning apparatus to dislodge a coating material from the surface of the print substrate, and removing the dislodged coating material and the cleaning solution from the print substrate using a vacuum system.
Abstract:
A zoned UV curing system for drying UV inks and coatings in printing presses. A plurality of linear UV lamps are spaced apart laterally across the travel path of substrates in a press. The axis of each lamp is aligned generally with the travel path, but may be slanted slightly so that every point on the travel path passes directly under at least one lamp. Power supply and control means allow selection of which lamps are powered, so that unneeded lamps may be turned off to save power. The power level of each lamp is variable. One transverse UV lamp may be placed upstream to initiate curing before substrates pass the zoned system. An IR heater may be placed upstream to preheat UV ink and coatings to enhance curing and to smooth coatings.
Abstract:
A flexographic printing press with a back-pressure cylinder (10) and at least one inking unit (12, 14, 16), which has an exchangeable printing cylinder (20), which can be placed against the back-pressure cylinder (10), an engraved ink transfer cylinder (24; 38), which can be placed against the printing cylinder and a chamber doctor blade (26), which can be placed against engraved ink transfer cylinder, wherein a washing cylinder (34) is constructed to be inserted in the inking unit (12, 14, 16) instead of the printing cylinder (20) and to apply cleaning liquid to the surface of the back-pressure cylinder (10).
Abstract:
Apparatus for cleaning a curved surface by employing the cloth principle, the apparatus having a roll for unsoiled cloth with unused cleaning cloth thereon, a roll for soiled cloth for taking up used soiled cloth, a pressing element for pulling unsoiled cleaning cloth off the roll for unoiled cloth and to bring it in contact with a surface to be cleaned by a movement of the element toward the surface, and means for pulling cleaning cloth off the roll for unsoiled cloth and for rolling soiled cloth up on the roll for soiled cloth by rolling up a part of the cleaning cloth that is longer or equal to the part thereof that is removed by the pressing element from the roll for unsoiled cloth independently of the respective diameters of the rolls for soiled and unsoiled cloth.
Abstract:
A method of starting up a printing machine after washing a rubber blanket thereof, includes pre-inking the rubber blanket by performing at least one complete revolution of the rubber blanket in contact with the inked printing plate before the start of printing.
Abstract:
A system for cleaning a moving substrate includes a rail mounted adjacent to the substrate surface and substantially transverse to the direction of movement thereof. A carriage for supporting a contact cleaning roller (CCR) is deployed on the rail for allowing axial translation of the CCR transversely of the substrate while in rolling contact therewith. Two renewal stations for cleaning the CCR are mounted adjacent the rail, one outboard of each substrate edge. The CCR is at least twice as long as the width of the substrate and is axially oscillable for a distance sufficient that all portions of the CCR surface may be cleaned by the renewal stations during one oscillation cycle of the CCR while the CCR maintains continuous contact with the substrate across the full width thereof. The CCR mounted on the carriage may be a primary CCR and the substrate may be a continuous web or sheet, or the CCR mounted on the carriage may be a secondary CCR and the substrate may be a primary CCR or other process roller.
Abstract:
Detachable inking device for a flexographic printing machine, its embodiment, cleaning and use in such a machine. This device comprises a chambered doctor blade (9) mounted on two lever-supports (13, 14) crossed by duct joining pieces (15, 16) respectively. The lever-supports are rigidly attached to a shaft (11) about which they are pivotable and which is held between the frames (34) of said flexographic printing machine. Said chambered doctor blade (9) consists of a body (25) made of light metal material, crossed at one of its ends by a tube (26) emgerging from the bottom (28) of said body (25), and at the other end by a tube (40) having its opening part (29) at level with the bottom (28) of the body (25). The latter rests on seals (38, 39) secured to the lever-supports (13, 14) to which are attached centering and fixing means (17, 18) allowing a quick loosening of the chambered doctor blade (9) without the help of any tool. The body (25) comprises two plane and outwardly slanted projecting parts against which are glued two doctor blades (19, 20) by means of a gluing means (48). The doctor blades (19, 20) are also held at their ends by a supporting piece (21) having two supporting parts (35, 36) applying the ends of the doctor blades (19, 20) on an end seal (22). Said chambered doctor blade (9) can be handled by a manipulator (55) and conveyed into an automatic washing device (80) or a device (100) for gluing and ungluing said doctor blades (19, 20).
Abstract:
In a printer, liquid ink is applied to a print medium as the medium is passed through the printer. A low pressure zone is generated along one surface of the print medium to hold a portion of the print medium substantially flat for a period of time during and after the liquid ink is applied to the print medium. By subjecting the portion of the print medium to the low pressure zone, cockling of the print medium is prevented.
Abstract:
An infra-red dryer utilizes high velocity air jets which scrub and break up the moist air layer which clings to the surface of a freshly printed and/or coated sheet. The high velocity air jets are directed through multiple air flow apertures across an array of infra-red lamps onto the freshly printed and/or coated sheets. An extractor exhausts the moisture-laden air from an exposure zone while short wave infra-red radiation heats the ink and/or protective coating. The effective exposure to pressurized air is increased by the air jets which produce a balanced pressure air blanket along the sheet travel path. The moist air layer is displaced from the printed and/or coated sheet and is extracted from the press as the sheet moves through the exposure zone.
Abstract:
A cleaning device for a printing press, having a cloth spindle formed with a longitudinal groove, and a cleaning cloth clampable in the longitudinal groove, comprising a clamping body rotatable inside the longitudinal groove out of a first position, wherein clamping of the cleaning cloth is undone, and into a second position, wherein the cleaning cloth is clamped between the clamping body and an inner face defining the longitudinal groove; and a printing press and, more particularly, a rotary printing press, in combination with the cleaning device.