Abstract:
A cryogenic air separation process having improved flexibility and operating efficiency for producing elevated pressure gaseous oxygen by vaporizing pressurized liquid oxygen wherein refrigeration generation for the process is decoupled from the flow of process streams and is produced by one or more multicomponent refrigerant fluid circuits.
Abstract:
A dual feed pressure cryogenic air separation system wherein all the feed air is pressurized to an intermediate pressure and cleaned of high boiling impurities at that intermediate pressure, and a portion further compressed to the high pressure and then cooled against another portion so as to prepare that other portion for the turboexpansion to the low pressure, preferably with the turboexpansion driving the further compression.
Abstract:
All the air to be distilled is compressed to a first high pressure and is thereafter separated into two portions. The first portion, representing at least 70% of the flow, is boosted to a second high pressure and cooled down in a heat exchanger to an intermediate temperature, where a part thereof is work expended to the mean pressure while the remainder is liquefied. The second portion is cooled and liquefied in the heat exchange line, into one or a plurality of flows at one or more pressures between the first and second high pressures.
Abstract:
A cryogenic air separation system wherein one portion of the feed air is turboexpanded to generate refrigeration, a second portion is condensed against vaporizing product from the air separation plant, and both portions are fed into the same column to undergo separation.
Abstract:
In the production of gaseous oxygen, a process and apparatus is used which requires low temperature rectification of air. The air is compressed, purified and cooled in a first heat exchanger while a second gas stream is compressed to elevated pressure, and is cooled in a second heat exchanger. Liquid oxygen removed from rectification is pressurized to a desired pressure and is evaporated and heated in heat exchange with the compressed gas stream.
Abstract:
A first stream of cooled and purified air is introduced into a higher pressure rectification column 12 through an inlet 14 and is separated into oxygen-enriched liquid and nitrogen vapour. A stream of the oxygen-enriched liquid is flashed through a pressure reducing valve 40 into an intermediate rectification column 22 in which it is separated into further-enriched liquid and an intermediate nitrogen vapour. A stream of the further-enriched liquid is reboiled in condenser-reboiler 46 and is introduced into a lower pressure rectifier 34 comprising an upper stage 58 and a lower stage 60. The lower pressure rectifier 34 has a bottom condenser-reboiler 16 which is heated by a second stream of cooled and purified air. The second stream is itself condensed in the reboiler 16 and is introduced into the higher pressure column 12. The lower pressure rectifier also has an intermediate condenser-reboiler 22 which is employed to form liquid nitrogen reflux for the rectification by condensing nitrogen vapour separated in the higher pressure rectification column. In alternative examples of the process, the liquid that is flashed through the valve 40 is subjected to phase separation rather than rectification.
Abstract:
A cryogenic rectification system wherein feed partially traverses the primary heat exchanger, thereafter is turboexpanded, and then traverses another portion of the primary heat exchanger reducing the temperature differences between approaching streams within the primary heat exchanger and thus the cycle irreversibilities resulting in lower power requirements.
Abstract:
In this process for the production of gaseous oxygen under pressure by air distillation in a double column, pumping liquid oxygen withdrawn at the bottom of the low pressure column, and vaporization of compressed liquid oxygen by heat exchange with air at high pressure, all the air to be distilled is compressed at the high air pressure, followed by expanding, at the pressure of the mean pressure column, the excess fraction of this air in a turbine which is decelerated by means of an air booster, and at least one liquid product is withdrawn from the apparatus.
Abstract:
In a system for air fractionation by low-temperature rectification, refrigeration is produced in a cooling stage by compression and expansion of the feed air or of nitrogen from rectification. By using the work gained during expansion for compressing only a partial stream of the gas passed through the cooling stage, the system according to this invention operates with increased efficiency and lower operating costs.
Abstract:
Low purity oxygen is produced by a process which employs a low pressure column and a medium pressure column, wherein the bottoms of the low pressure column are reboiled against condensing air and the resulting condensed air is fed into both the medium pressure and the low pressure column.