Abstract:
A superconducting magnetic field coil (1; 21; 31; 41; 51; 61) comprising at least one coil section (42; 43) which is wound in layers, is characterized in that, in at least one layer (11, 12, 13, 14, 101, 102, 103, 104) of the coil section (42; 43) N (with N≧2), superconducting wire sections (A, B, C, D, E) are wound in parallel, such that the windings of the N wire sections (A, B, C, D, E) are adjacent to each other and the N wire sections (A, B, C, D, E) are connected in series. The inventive magnetic field coil can be produced at highly reduced costs, in particular, when the magnetic field coil has a comparatively large layer length.
Abstract:
Tape-shaped superconducting wires, and a superconducting coil formed from said wires, wherein a plurality of electrically separated superconducting film parts, each having a rectangular cross section and arranged in parallel, form parallel conductors, providing superconducting wires capable of containing losses incurred in the presence of alternating current (A/C). A superconducting coil is made by winding the superconducting wires, wherein the coil structure contains at least a part wherein perpendicular interlinkage magnetic fluxes acting among conductor elements of the parallel conductors by the distribution of magnetic fields generated by the superconducting coils cancel mutually in order to contain circulating current within the wires and to make shunt current uniform, thereby providing a low-loss A/C superconducting coil.
Abstract:
A superconducting magnetic field coil (1; 21; 31; 41; 51; 61) comprising at least one coil section (42; 43) which is wound in layers, is characterized in that, in at least one layer (11, 12, 13, 14, 101, 102, 103, 104) of the coil section (42; 43) N (with N≧2), superconducting wire sections (A, B, C, D, E) are wound in parallel, such that the windings of the N wire sections (A, B, C, D, E) are adjacent to each other and the N wire sections (A, B, C, D, E) are connected in series. The inventive magnetic field coil can be produced at highly reduced costs, in particular, when the magnetic field coil has a comparatively large layer length.
Abstract:
The present invention discloses a pancake-type bifilar winding module using a superconducting wire and a winding bobbin therefor. The pancake-type bifilar winding module includes (a) a bobbin having (i) a cylindrical main body having a wire insertion groove for winding a superconducting wire in a bifilar manner to have the least inductance, in which the wire insertion groove has a depth greater than the width of the superconducting wire and a radius of curvature greater than a predetermined value, and is structured to guide the superconducting wire from one side to another side of the body, and (ii) a cylindrical supporting base having at least one block fixing notch and being disposed under the main body, (b) the superconducting wire wound in a bifilar manner, maintaining a predetermined tension as it is disposed in the wire insertion groove of the bobbin and curved in the middle portion thereof in the longitudinal direction, and (c) a copper block serving as an electrical terminal, which is installed and fixed to the block fixing notch of the supporting base of the bobbin for joining the superconducting wire with a terminal portion, and joined with the superconducting wire while the superconducting wire maintains a predetermined tension.
Abstract:
A superconducting wire includes first and second superconducting layers disposed on one or more substrates in stacked relationship, the first superconducting layer comprising a high temperature superconducting oxide of a first composition and the second superconducting layer comprising a high temperature superconducting layer of a second composition, wherein the first and second compositions are different. The first superconductor layer optionally includes a high temperature superconductor composition selected to provide enhanced critical current (Ic(c)) in the presence of magnetic fields perpendicular to surface of the superconducting layer (H//c). The second superconductor layer optionally includes a high temperature superconductor composition selected to provide enhanced critical current (Ic) in the presence of magnetic fields parallel to surface of the superconducting layer (H//ab).
Abstract:
A superconducting coil assembly is of the type mounted to a rotor assembly of an electric rotating machine and, in operation, is maintained at cryogenic temperatures while the portion of the rotor assembly is maintained above cryogenic temperatures. The superconducting coil assembly includes at least one superconducting winding wound about a longitudinal axis of the coil assembly and having an inner radial surface defining a bore extending through the coil assembly. The coil assembly also includes at least one support member extending across the bore and mechanically coupled to the portion of the rotor assembly and to opposing portions of the inner radial surface of the at least one superconducting winding.
Abstract:
The present invention discloses a pancake-type bifilar winding module using a superconducting wire and a winding bobbin therefor. The pancake-type bifilar winding module includes (a) a bobbin having (i) a cylindrical main body having a wire insertion groove for winding a superconducting wire in a bifilar manner to have the least inductance, in which the wire insertion groove has a depth greater than the width of the superconducting wire and a radius of curvature greater than a predetermined value, and is structured to guide the superconducting wire from one side to another side of the body, and (ii) a cylindrical supporting base having at least one block fixing notch and being disposed under the main body, (b) the superconducting wire wound in a bifilar manner, maintaining a predetermined tension as it is disposed in the wire insertion groove of the bobbin and curved in the middle portion thereof in the longitudinal direction, and (c) a copper block serving as an electrical terminal, which is installed and fixed to the block fixing notch of the supporting base of the bobbin for joining the superconducting wire with a terminal portion, and joined with the superconducting wire while the superconducting wire maintains a predetermined tension.
Abstract:
A tunable filter having a fixed substrate, a first and second plate comprising a high-temperature superconductor material on the fixed substrate, a movable substrate, a mechanical driver attached to the fixed substrate and the movable substrate, a floating plate comprising a high-temperature superconductor material on the fixed substrate wherein the floating plate, the first plate, and the second plate define a gap, and wherein the gap is varied by length changes in the mechanical driver is provided.
Abstract:
A method of forming magnets using stacked superconducting films-disks of coated conductor is described. The superconducting material may be either from the oxide high temperature superconducting (HTS) class or the metallic/inter-metallic low temperature superconducting (LTS) class. An LTS metallic or inter-metallic compound can include Nb, Va, Ti, Hg, Pb, NbTi, Nb3Sn, Nb3Al, etc. or the more recently discover MgB2. An oxide superconductor refers to the RE-Ba2Cu3Ox compound, wherein REnullY, Nd, La, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu; the Bi2Sr2CaCu2Ox, the (Bi, Pb)2 Sr2CaCu2Ox, Bi2Sr2Ca2Cu3Ox or (Bi, Pb)2Sr2Ca2Cu3Ox compound; the Tl2Ca1.5BaCu2Ox or Tl2Ca2Ba2Cu3Ox compound; or a compound involving substitution such as the Nd1nullxBa2nullxCu3Ox compounds.
Abstract:
A superconducting coil assembly is of the type mounted to a rotor assembly of an electric rotating machine and, in operation, is maintained at cryogenic temperatures while the portion of the rotor assembly is maintained above cryogenic temperatures. The superconducting coil assembly includes at least one superconducting winding wound about a longitudinal axis of the coil assembly and having an inner radial surface defining a bore extending through the coil assembly. The coil assembly also includes at least one support member extending across the bore and mechanically coupled to the portion of the rotor assembly and to opposing portions of the inner radial surface of the at least one superconducting winding.