Abstract:
This invention relates to a practical superconducting conductor based upon biaxially textured high temperature superconducting coatings. In particular, methods for producing flexible and bend strain-resistant articles and articles produced in accordance therewith are described which provide improved current sharing, lower hysteretic losses under alternating current conditions, enhanced electrical and thermal stability and improved mechanical properties between otherwise isolated films in a coated high temperature superconducting (HTS) wire. Multilayered materials including operational material which is sensitive to bend strain can be constructed, in which the bend strain in the region in which such operational material is located is minimized. The invention also provides a means for splicing coated tape segments and for termination of coated tape stack ups or conductor elements. In one embodiment, a multi-layer high temperature superconductor is provided and includes first and second high temperature superconductor coated elements. Each element includes a substrate, at least one buffer deposited on the substrate, a high temperature superconductor layer, and a cap layer. The first and second high temperature superconductor coated elements are joined at the first and second cap layers.
Abstract:
Superconducting coils and methods of manufacture include a superconductor tape wound concentrically about and disposed along an axis of the coil to define an opening having a dimension which gradually decreases, in the direction along the axis, from a first end to a second end of the coil. Each turn of the superconductor tape has a broad surface maintained substantially parallel to the axis of the coil.
Abstract:
The invention relates to a high-temperature superconductor lead element including a plurality of lengths of high-temperature superconductor electrically connected in a non-collinear configuration, for example, next to and parallel with each other, to increase the thermal length of the lead element. A proximal end of a first of the lengths is configured for thermal connection to a warm thermal element and a distal end of a last of the lengths is configured for thermal connection to a cold thermal element. Each length of high-temperature superconductor includes a high-temperature superconductor plate having an electrically insulative support and a plurality of high-temperature superconductor tapes mounted, in a linear array, on the support. A plurality of high-temperature superconductor plates are arranged with their longitudinal axis parallel to form a cylindrical lead with "bad" self-fields in each plate being substantially cancelled by self-fields in neighboring plates.
Abstract:
A dynamoelectric machine has a rotor including a driven shaft at one end thereof, an undriven shaft at the other end and a central section connecting said shafts. A superconducting field winding is disposed within said central section with a torque tube located concentrically with the rotor shafts. The torque tube and superconducting field winding are supported in cantilever fashion to one end of the rotor shafts.
Abstract:
A cable includes a plurality of bundles of insulated electrical conductors, each bundle having a first conductor, a second conductor, and a third conductor in a layered configuration. The first conductor of each bundle is connected in parallel to the first conductor of the remaining bundles, the second conductor of each bundle is connected in parallel to the second conductor of the remaining bundles, and the third conductor of each bundle is connected in parallel to the third electrical conductor of the remaining bundles. In addition, within each bundle, the first, second and third electrical conductors are configured so that a magnetic field generated in response to currents flowing within the bundle is zero as seen at a plane oriented transverse to an electrical conduction direction of the cable and located between the ends of the cable.
Abstract:
A cable includes a plurality of bundles of insulated electrical conductors, each bundle having a first conductor, a second conductor, and a third conductor in a layered configuration. The first conductor of each bundle is connected in parallel to the first conductor of the remaining bundles, the second conductor of each bundle is connected in parallel to the second conductor of the remaining bundles, and the third conductor of each bundle is connected in parallel to the third electrical conductor of the remaining bundles. In addition, within each bundle, the first, second and third electrical conductors are configured so that a magnetic field generated in response to currents flowing within the bundle is zero as seen at a plane oriented transverse to an electrical conduction direction of the cable and located between the ends of the cable.
Abstract:
A superconducting coil assembly is of the type mounted to a rotor assembly of an electric rotating machine and, in operation, is maintained at cryogenic temperatures while the portion of the rotor assembly is maintained above cryogenic temperatures. The superconducting coil assembly includes at least one superconducting winding wound about a longitudinal axis of the coil assembly and having an inner radial surface defining a bore extending through the coil assembly. The coil assembly also includes at least one support member extending across the bore and mechanically coupled to the portion of the rotor assembly and to opposing portions of the inner radial surface of the at least one superconducting winding.
Abstract:
A stator support system for supporting a stator coil assembly includes an inner support tube having an outer surface; spaced windings supported on the inner support tube with spaces between adjacent windings defining gaps; support members, each disposed within one of the gaps and having a first and second edge configured to mechanically engage the outer surface of the inner support tube; and a cross support positioned over the spaced winding and extending perpendicular to a longitudinal axis of the stator coil assembly. The cross support having a first edge configured to mechanically engage the second edge of the support members. The stator coil assembly can include a stator coil having at least one conductive winding; an electrically insulating material disposed around the stator coil; at least one cooling conduit for receiving a coolant from an outside source, the at least one cooling conduit disposed adjacent a first portion of an outer surface of the stator coil; and a thermally conductive member including graphite and disposed around the at least one cooling conduit and a second portion of the outer surface of the stator coil to transfer heat from the second portion to the at least one cooling conduit, thereby reducing the temperature gradient in the electrically insulating material.
Abstract:
A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.
Abstract:
A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.