Abstract:
A method of providing visual information to a human viewer includes the steps of defining a range of distances from a surface and a range of viewing angles with respect to the surface, determining the location and viewing angle of a human viewer with respect to the surface, and providing a virtual image to the human viewer via a visual display device worn by the human viewer when the location and viewing angle of the human viewer with respect to the surface is determined to be within the defined range of distances and viewing angles, such that the virtual image is perceived to be defined on the surface by the human viewer.
Abstract:
Combined aircraft hybrid fuel cell auxiliary power unit and environmental control system and methods are disclosed. In one embodiment, a method includes chemically converting a portion of combustible fuel into electrical energy. An unutilized portion of fuel emitted by the chemical conversion of combustible fuel is combusted to thermal power. The heated gas is used to drive a power recovery turbine connected to a drive shaft. A source of input oxidizing gas is compressed and is used to help chemically convert the combustible fuel into electrical energy. The heated gas is used to mechanically drive the power recovery turbine which is coupled to a generator to produce electrical energy.
Abstract:
An electrochemical system includes a reversible fuel cell system which generates electrical energy and reactant product from fuel and oxidizer in a fuel cell mode and which generates the fuel and oxidant from the reactant product and the electrical energy in an electrolysis mode. The system also includes a reactant product delivery device which is adapted to supply the reactant product to the reversible fuel cell system operating in the electrolysis mode, in addition to or instead of the reactant product generated by the reversible fuel cell system in the fuel cell mode, and a fuel removal device which is adapted to remove the fuel generated by the reversible fuel cell system operating in the electrolysis mode from the electrochemical system.
Abstract:
Solid oxide fuel cell power generation systems which are capable of producing high-quality heat are used to drive refrigeration systems. The amount of electrical energy produced and the cooling capacity obtainable are well matched to electronic data center power and cooling needs. The power generation system includes a solid oxide fuel cell stack, a heat pump and an optional turbine.
Abstract:
The space heating system with fuel cells (11) has a connection to a public electrical network (50). In this system a fuel (B) can be supplied to the fuel cells in gaseous form through a main gas valve (200) for the production of thermal and electrical energy. The main gas valve has a control which, on an interruption of the current supplied, results in an automatic operating shutdown. The possibilities exist for the system to feed the electrical energy at least partly into the network and to deliver the thermal energy to a heating circuit which is operable with electrical energy from the network. An electrical inverter (4), with which direct current of the fuel cells can be converted into alternating current, can be operated in two operating states, on the one hand, for a feed into the public network, and, on the other hand, for a feed into the island network of the system. Means are provided with respect to a power cut of the public network by which a short-term maintenance of necessary functions of the space heating systemnullthe fuel supply into the fuel cells having first prioritynullis ensured without support by, for example, galvanic batteries. Moreover, controls and circuits are provided with which at least the necessary functions of the space heating system can continue to be maintained by means of electrical energy from the fuel cells.
Abstract:
A sealing arrangement contains a first mating surface, a second mating surface, and a felt sealing member contacting the first and the second mating surface. The arrangement may be used in a solid oxide fuel cell.
Abstract:
A neutrally buoyant airship, such as a blimp, contains a lifting body which allows the airship to remain neutrally buoyant in air and a fuel cell located in the airship. A method of generating power in the neutrally buoyant airship, comprising providing a fuel and a oxidizer to a solid oxide fuel cell to generate power, and providing heat from the fuel cell to a remotely located lifting body, wherein the lifting body allows the airship to remain neutrally buoyant in air.
Abstract:
A solid oxide fuel cell includes a cathode, a solid ceramic electrolyte, and an anode comprising a cermet containing an environment tolerant catalyst, such as a fuel starvation and/or a sulfur tolerant catalyst.
Abstract:
An electrochemical system includes a reversible fuel cell system which generates electrical energy and reactant product from fuel and oxidizer in a fuel cell mode and which generates the fuel and oxidant from the reactant product and the electrical energy in an electrolysis mode. The system also includes a reactant product delivery device which is adapted to supply the reactant product to the reversible fuel cell system operating in the electrolysis mode, in addition to or instead of the reactant product generated by the reversible fuel cell system in the fuel cell mode, and a fuel removal device which is adapted to remove the fuel generated by the reversible fuel cell system operating in the electrolysis mode from the electrochemical system.
Abstract:
Combined aircraft hybrid fuel cell auxiliary power unit and environmental control system and methods are disclosed. In one embodiment, a method includes chemically converting a portion of combustible fuel into electrical energy. An unutilized portion of fuel emitted by the chemical conversion of combustible fuel is combusted to thermal power. The heated gas is used to drive a power recovery turbine connected to a drive shaft. A source of input oxidizing gas is compressed and is used to help chemically convert the combustible fuel into electrical energy. The heated gas is used to mechanically drive the power recovery turbine which is coupled to a generator to produce electrical energy.