Abstract:
Method for treating a liquid with a view to heating same, generating steam, developing a catalytic reaction and/or concentrating at least one species present therein, wherein a flow of a liquid is caused to circulate in at least one treatment area formed between at least two electrodes connected to an alternating current source with a phase alternation frequency greater than or equal to
Abstract:
The present invention relates to an electrically heatable packed pressure-bearing apparatus for conducting endothermic reactions having an upper (3), middle (1) and lower (3) apparatus section, where at least one pair of electrodes (4, 5) in a vertical arrangement is installed in the middle section (1) and all electrodes are disposed in an electrically conductive solid-state packing (26), the upper and lower apparatus sections have a specific conductivity of 105 S/m to 108 S/m, and the middle apparatus section is electrically insulated against the solid-state packing, wherein the upper and lower apparatus sections are electrically insulated from the middle apparatus section, the upper electrode is connected via the upper apparatus section and the lower electrodes via the lower apparatus section or the electrodes are each connected via one or more connecting elements (10, 16) that are in electrical contact with these sections and the ratio of the cross-sectional areas of the upper and lower electrode to the cross-sectional area of the respective current-conducting connecting element or, without use of a connecting element, the ratio of the cross-sectional area of the upper and lower electrode to the cross-sectional area of the respective current-conducting apparatus section is 0.1 to 10.
Abstract:
Disclosed is a system for ohmic heating of a fluid which includes at least one chamber for receiving the fluid and at least two units each including at least one electrode. Each of the at least one electrode is associated to at least one device for galvanic separation. The electrodes of each of the two units are disposed in the chamber at a distance apart from one another and the device for galvanic separation is disposed outside of the chamber. The system also includes at least one frequency inverter that is electrically connected to the at least two electrode-units for operating the at least two electrode-units.
Abstract:
A trench heater includes a case, a connecting unit, and a sub-assembly unit. The sub-assembly unit includes a baffle, a first junction panel, a second junction panel, and an electrical heating unit. The electrical heating unit includes a heating unit that comprises a heating element, a body, and a granular heat transfer medium. Multiple trench heaters may be connected end to end to create longer lengths via a modular platform.
Abstract:
Problem to be SolvedTo provide a heat-generating device capable of efficiently maintaining heat generation for a long time at a low cost while saving power.SolutionThe heat-generating device includes: a hollow vessel having an electrically insulated inner part; a pair of counter electrodes housed inside the vessel, and separated from and opposing each other; and a heat-generating body housed between the counter electrodes inside the vessel, and composed of silicon powder and carbon powder in a mixed state.
Abstract:
The invention relates to heat engineering, power engineering and the field of electric heating of liquids, water for instance; it can be used in circulation water heating systems and hot water supply, and as a universal device for diverse electric heaters. An object of the invention are to enhance the ease of fabrication, fabricability, and operability for block electrodes and electrode heating boilers on the whole, to increase the reliability of device both in static and dynamic modes ones. The invention meets an object of extended performance capabilities, versatility and flexibility of the device, potential diversification and enhancement of adaptability in solving particular problems. Moreover, the invention allows improvement of convection in water heating boilers and reduction of uniformity of sludge and rust deposition on electrodes thus increasing the heater effective performance time. The invention object comprises an improvement of protection against breakdowns between the electrodes as well, phase current load imbalance reduction, electrode protection against non-uniform deformation during operation in dynamic conditions. It is also an object of the invention to extend i the range of constructional capacity control without design and dimensional changes. FIG. 2 provides a schematic of electrodes (1) arrangement on the basis (3) located on the inner case (2) side with electrodes (1) slightly deviating from the longitudinal symmetric axis of the case (2) and irregularly spaced on the basis, electrode longitudinal axes deviating from each other at small angles. (4)—outer electrode terminals (1).
Abstract:
A method and apparatus for melting aluminum uses a dense metal salt of Rubidium, Cesium, or Strontium. The salt is melted by a stinger and then superheated by AC applied to electrodes immersed in the salt. Aluminum in contact with the salt melts and floats on the salt. In continuous scrap melting, inflows and outflows of aluminum are comparable and may be shielded by inert gas. The superheated salt may be purified and may be heated in a separate reservoir and pumped to and from another reservoir containing salt and/or metal. The salt may be used to supplement the heating of an existing furnace.
Abstract:
A heating system to heat a main heating circulation comprises an electric heater, a control head, a heat exchanger, a pump, and a plurality of tubes. The electric heater is adapted to heat a primary heating liquid by applying an electric current directly to the primary heating liquid. The control head is adapted to determine a temperature and a pressure of the primary heating liquid. The heat exchanger comprises a first liquid passage for the primary heating liquid and a second liquid passage for a secondary heating liquid in the main heating circulation. The second liquid passage is in thermal contact with the first liquid passage to heat the secondary heating liquid while cooling the primary heating liquid. The tubes connect the electric heater, the control bead, the heat exchanger and the pump to define a circulation for the primary heating liquid. The pump is adapted to pump the primary heating liquid such that heat is transferred from the heater via the heat exchanger into said the heating circulation.
Abstract:
A method and apparatus for melting aluminum uses a dense metal salt of Rubidium, Cesium, or Strontium. The salt is melted by a stinger and then superheated by AC applied to electrodes immersed in the salt. Aluminum in contact with the salt melts and floats on the salt. In continuous scrap melting, inflows and outflows of aluminum are comparable and may be shielded by inert gas. The superheated salt may be purified and may be heated in a separate reservoir and pumped to and from another reservoir containing salt and/or metal. The salt may be used to supplement the heating of an existing furnace.
Abstract:
A silo has more than one discharge passage, and each passage has the ability to increase or decrease its respective flow rates. The silo and each portion of the silo that feeds into each individual discharge passage can measure a feature of the solid being dispensed, such as its moisture content or its temperature. A computer controller is then used to take this feedback and adjust the rate of flow from each discharge passage so that the flows from each passage are kept the same despite the variation in moisture, temperature or any other characteristic of the flowing solid. A method to utilize this device is also taught.