Abstract:
A method and apparatus for performing autoconvergence is described. An image having a first aspect ratio and a plurality of sides is received. The image is displayed on a display having a second aspect ratio and at least one sensor corresponding to each side of the image. The image is moved so that each sensor can detect the corresponding side of the image.
Abstract:
An artificial firelog and firestarter chip producing apparatus comprising a cutting assembly, a compression conveyor auger assembly and a die. The apparatus converts standard waxed corrugated cardboard boxes into artificial firelogs by first slicing cardboard sheets into cardboard strips, then chopping the cardboard strips into cardboard segments in the cutting assembly. The cardboard segments are horizontally disposed between the rifling and compressed in the compression conveyor auger assembly and extruded in the die to form generally horizontally disposed, circular, longitudinally-shaped sections of a firelog. Firestarter chips are fabricated by the cutting assembly, which slices waxed cardboard sheets in conjunction with paper sheets into waxed cardboard and paper strips, then chopping the waxed cardboard strips into waxed cardboard segments and the paper strips into paper segments and waxed cardboard segments mix.
Abstract:
An apparatus for adjusting a horizontal position of a video display appliance in which a display image is put in the center of a monitor screen. The apparatus includes a comparative circuit, a horizontal correction circuit and a deflection circuit. The comparative circuit detects an overlap signal representing that a horizontal flyback pulse and a video signal are overlapped. The horizontal correction circuit calculates a mean value of first and second horizontal values and transmits the mean value to the deflection circuit. The deflection circuit adjusts the horizontal position using the mean value as an adjustment value to put the display image in the middle of the monitor screen.
Abstract:
A digital television signal receiver includes a decoder, capable of decoding digital television signals having a plurality of different formats, which outputs video information in which image fields having mutually different numbers of scanning lines appear aperiodically when the decoder decodes a digital television signal having a specific one of the different formats; a display device which displays an image based on the video information output from the decoder; and an image controller which sets respective display start positions for the image fields having mutually different numbers of scanning lines to a same display start position in a vertical direction when the display device displays an image based on the video information output from the decoder when the decoder decodes the digital television signal having the specific format.
Abstract:
A horizontal automatic frequency control (AFC) used in a display having a display device such as a cathode ray tube (CRT) is provided. The AFC circuit reduces a horizontal distortion and horizontal jitter on the CRT. The AFC circuit includes a video signal processor for demodulating and converting an input video signal into a desired signal such as a YUV signal or an RGB signal, a synchronous separator for separating a synchronizing signal from the video signal, a dual-port line memory, an Hout generator for generating a horizontal driving pulse which drives a horizontal deflection yoke, a read clock generator for generating a read clock (RCK) signal which is synchronized in phase with a flyback pulse, and a horizontal deflection driver for controlling horizontal deflection of the CRT and generating the flyback pulse. The line memory absorbs a horizontal position change of a displayed image caused by a temperature change or a load change in the horizontal deflection driver.
Abstract:
In a television receiver comprising a horizontal deflection circuit (2) associated with a flyback transformer (9), the horizontal deflection circuit comprises a switch (6) which is controlled by a control signal (Hdrive) generated by a deflection control circuit (1). The deflection control circuit generates a phase difference signal (Vcomp) which is a function of the phase difference of a horizontal synchronisation pulse and a flyback pulse and generates the control signal (Hdrive) as a continuous function of the phase difference signal (Vcomp). The deflection circuit is further arranged to generate at least one discrete phase jump of the control signal (Hdrive) when the phase difference signal (Vcomp) lies outside of a range of preset values (Vlow, Vhigh).
Abstract:
There is provided a vertical timing signal generating circuit which can operate stably irrespective of the phase relationship between a vertical synchronous signal and a vertical timing signal generated by a counter, and can provide a vertical timing signal having a desired phase. Delay circuit 100 receives vertical synchronous signal Pc 123, outputs as a reset signal a signal which is delayed in phase with respect to input vertical synchronous signal Pc 123 by a predetermined phase, and vertical counter 103 receives horizontal synchronous signal Pb 121 and reset signal Pe 125 outputted from delay circuit 100 and resets the count by using reset signal Pe 125 to count a predetermined number of horizontal synchronous signals 121, thereafter outputting vertical timing signal Pd 127.
Abstract:
In a vertical sawtooth generator of a vertical deflection circuit, a first comparator generates an output signal when a retrace portion of a sawtooth signal is at a first magnitude to initiate a vertical trace portion of the sawtooth signal. An amplifier responsive to the sawtooth signal and to a reference signal generates a feedback current at a time that occurs between the center of vertical trace and the end of trace and away from the center of trace. The feedback current is determined in accordance with a difference between the sawtooth signal and the reference signal. The feedback current is coupled to a first capacitor to develop a gain control voltage. The control voltage is applied via a voltage-to-current converter to an integrating capacitor to develop in the integrating capacitor the trace portion of the sawtooth signal. The control voltage is initialized during a power start-up interval.
Abstract:
A television apparatus includes a display for a video signal representing a picture. The video signal has a vertical synchronizing component defining fields of horizontal lines which can have other than a standard number of horizontal lines per field under certain operating conditions. A counter measures the number of horizontal lines in each field. A panning circuit generates a vertical reset signal which is phase shifted by a selected number of horizontal lines relative to the vertical synchronizing component of the video signal for vertically panning the picture on the video display by the selected number of horizontal lines. The selected number of horizontal lines is adjusted responsive to the measured lengths of the fields to maintain the selected amount of vertical panning even under the certain operating conditions.
Abstract:
A display system controls vertical zoom and panning. A video display has a first format display ratio. A circuit, for example one generating a raster, maps on the video display an adjustable picture display area represented in a video signal having a vertical synchronizing component. The picture represented in the video signal has a second format display ratio. A vertical height control circuit, for example one controlling the vertical height of the raster by controlling the vertical deflection current, selectively enlarges the picture display area relative to the video display. A panning control circuit adjusts in phase a vertical blanking interval relative to the vertical synchronizing component to control which portion of the enlarged picture area is displayed and which portion is not displayed. The format display ratios can be the same or different, for example 16.times.9 for the video display and 4.times.3 for the picture, in the latter case.