Abstract:
An image forming apparatus includes a reading unit, an image processing unit configured to perform image processing based on an adjustment condition, an image forming unit configured to form an image on a sheet based on image data on which the image processing is performed, and a controller configured to control the image forming unit to form a first measurement image on a first side of a sheet, control the image forming unit to form a second measurement image on a second side of the sheet, control the reading unit to obtain reading data related to the sheet on which the first and the second measurement images are formed, and generate the adjustment condition based on the reading data and a correction condition, wherein the controller generates the correction condition based on a reading result of the first side and a reading result of the second side.
Abstract:
A computer peripheral that may operate as a scanner. The scanner captures image frames as it is moved across an object. The image frames are formed into a composite image based on computations in two processes. In a first process, fast track processing determines a coarse position of each of the image frames based on a relative position between each successive image frame and a respective preceding image determine by matching overlapping portions of the image frames. In a second process, fine position adjustments are computed to reduce inconsistencies from determining positions of image frames based on relative positions to multiple prior image frames. As additional image frames are added to the composite image, the size and format of the composite image may be automatically adjusted to facilitate ease of use.
Abstract:
A hand-propelled printer/scanner is disclosed for use in updating a project document, such as any diagram, schematic, floor plan, or other document. The project document is updated with revision drawings and/or notes printed by the hand-propelled printer/scanner directly on an existing project document. The hand-propelled printer/scanner is sized for single hand use and is moved about on the project document for printing the revisions and notes. A position module provides absolute position data so that the revisions and notes are printed at the correct locations on the existing document. Use of the hand-propelled printer/scanner allows project documents to be updated on the job site, as an example.
Abstract:
A first part calculates corrected image data for each pixel in the range in which the reading parts of the adjacent image sensors overlaps in the main scan direction, for correcting the image data for a position shift less than an amount corresponding to one pixel in the main scan direction of the image sensors. A correcting method is determined in such a manner that a position shift amount to be corrected increases in a step-by-step manner as moving from a base portion to an end portion in the range in which the adjacent image sensors overlap in the main scan direction. A second part multiplies the image data corrected by the thus-determined correcting method by a weighting factor determined according to a position in the main scan direction in the adjacent image sensors.
Abstract:
A method for scanning large-format documents by way of a large-format scanner, which is connected to a PC (11) via a standard interface (10), is to be further developed, so as to omit prescans, to optimize the scanning rate, to significantly increase productivity between the application of the document and the storage of the data on the PC, and to obtain cost-efficient scans. It is disclosed that upon inserting (1) the documents into the large-format scanner a broadness detection (2) takes place, depending on said broadness detection (2) areas of at least one image detection element which are not required because said areas are not confronted with the document will be turned off (3) in order to reduce the band width of the scanned data, the document will be scanned (7), the scanned data will be transmitted via the standard interface (10), a continuous control of the maximum amount of data which can be transmitted takes place during data transfer (10) and depending on the control result the rate of the document feeding is affected.
Abstract:
A compensation apparatus for image scan, applied to an optical scanner with a platform, on which an object to be scanned is disposed. The optical scanner has a photosensitive apparatus with a set of scan photosensitive devices and a storage apparatus. When the object is scanned by the set of scan photosensitive devices, a scanned image is obtained and saved in the storage apparatus temporarily. The compensation apparatus has a set of calibration boards, a set of calibration photosensitive devices and an image processor. The set of calibration boards has two calibration boards located at two sides of the platform. The set of calibration photosensitive devices is located at two sides of the set of scan photosensitive device. The image processor is used to extract and compare the calibrated image, so as to adjust the scanned image.
Abstract:
A compensation apparatus for image scan, applied to an optical scanner with a platform, on which an object to be scanned is disposed. The optical scanner has a photosensitive apparatus with a set of scan photosensitive devices and a storage apparatus. When the object is scanned by the set of scan photosensitive devices, a scanned image is obtained and saved in the storage apparatus temporarily. The compensation apparatus has a set of calibration boards, a set of calibration photosensitive devices and an image processor. The set of calibration boards has two calibration boards located at two sides of the platform. The set of calibration photosensitive devices is located at two sides of the set of scan photosensitive device. The image processor is used to extract and compare the calibrated image, so as to adjust the scanned image.
Abstract:
A compensation apparatus for image scan, applied to an optical scanner with a platform, on which an object to be scanned is disposed. The optical scanner has a photosensitive apparatus with a set of scan photosensitive devices and a storage apparatus. When the object is scanned by the set of scan photosensitive devices, a scanned image is obtained and saved in the storage apparatus temporarily. The compensation apparatus has a set of calibration boards, a set of calibration photosensitive devices and an image processor. The set of calibration boards has two calibration boards located at two sides of the platform. The set of calibration photosensitive devices is located at two sides of the set of scan photosensitive device. The image processor is used to extract and compare the calibrated image, so as to adjust the scanned image.
Abstract:
The present invention provides a digital camera capturing technique for documents. In one embodiment, a method for a digital camera capturing technique includes determining an orientation of an object (e.g., a document) relative to an optical axis of the digital camera, and determining a distance of the object from the digital camera. The method also includes determining a planarity of the object (e.g., a curl of the document). The method further includes projecting a pattern on the object, and detecting the projected pattern, which is then processed to determine the orientation of the object relative to the optical axis of the digital camera, the distance of the object from the digital camera, and the planarity of the object.
Abstract:
An imaging device comprising a plurality of linear imaging arrays and image formation optics that provide field of views corresponding to the plurality of linear image arrays. At least one illumination module produces planar light illumination that substantially overlaps the field of views corresponding to the plurality of linear imaging arrays. Image processing circuitry performs image-based velocity estimation operations, which analyzes pixel data values of a plurality of composite 2-D images each derived from sequential image capture operations of a corresponding one linear imaging array to derive velocity data that represents an estimated velocity of the imaging device with respect to at least one target object disposed in the fields of view. Preferably, the image processing circuitry also produces a first image of portions of the target object(s), the first image having substantially constant aspect ratio, utilizing image transformation operations (or camera control operations) that are based upon the velocity data, to thereby compensate for aspect ratio distortions that would otherwise result from variations in velocity of the imaging device with respect to the target object(s). In addition, the image processing circuitry preferably carries out image-based horizontal jitter estimation and compensation operations, which estimate the horizontal jitter of the imaging device relative to the target object(s) over the image capture operations from which the first image is derived and transform the first image utilizing shift operations that are based upon such estimated horizontal jitter to produce a second image of portions of the target object(s) which compensates for horizontal jitter distortion that would otherwise result therefrom. The first image or second image (or image derived from sharpening the first or second images) is preferably subject to image-based bar code detection operations and/or OCR operations, or output for display to a display device.