Abstract:
A light scanning device includes: a first semiconductor laser 44a that emits a light beam L1; a polygonal mirror 42 that deflects the light beam L1; a reflective mirror 64a that reflects the light beam L1 deflected by the polygonal mirror 42 and causes the light beam L1 to enter a photosensitive drum 13; and a BD sensor 72 that detects the light beam L1 deflected by the polygonal mirror 42. The light scanning device scans the photosensitive drum 13 with the light beam L1 and set scanning timing of the photosensitive drum 13 using the light beam L1 based on detection timing of the light beam L1 using the BD sensor 72. The BD sensor 72 is arranged in the position farther from the polygonal mirror 42 than the last reflective mirror 64a that reflects the light beam L1 immediately before entering the photosensitive drum 13 and arranged inside a scanning angle range α of the light beam L1 corresponding to an effective scan area of the photosensitive drum 13.
Abstract:
An image reading device includes a first image reading portion, a cooling portion, a second image reading portion, and a notification processing portion. The first image reading portion reads an image of a document sheet at a first reading position. The cooling portion cools the document sheet at a cooling position downstream in a feeding direction of the document sheet with respect to the first reading position. The second image reading portion reads an image of the document sheet at a second reading position downstream in the feeding direction with respect to the cooling position. In a case where a difference image different from a first image read by the first image reading portion, the difference image being included in a second image read by the second image reading portion has been detected, the notification processing portion provides a notification that the difference image has been detected.
Abstract:
An electrophotographic image forming apparatus including a light scanning device to scan first and second light beams, a synchronization signal detector to receive a portion of the first light beam scanned by the light scanning device and to generate a first horizontal synchronization signal, and a video signal processor including a second horizontal synchronization signal generating unit to count a synchronization signal offset and generate a second horizontal synchronization signal regarding the second light beam when the first horizontal synchronization signal is transmitted from the synchronization signal detector, and a video controller to transfer video data to the light scanning device based on the first and second horizontal synchronization signals.
Abstract:
Systems, apparatuses, and methods for a printing device for use with a mobile device are described herein. The printing device may include an image capture module to capture surface images of a medium and a positioning module to determine positioning information based at least in part on navigational measurements and the captured surface images. A print module of the printing device may cause print forming substances to be deposited based at least in part on the positioning information. A mobile device may include one or more features of the printing device including the image capture module, the positioning module, and the print module. Other embodiments may be described and claimed.
Abstract:
A hand-held scanning system and method thereof are described. A look-up table is created to generate a mapping relation between a plurality of reference amplitudes and a plurality of corresponding sampled positions. An analog-to-digital converter samples an analog signal and converts it into a digital signal. The digital signal represents a mapping relation between the sampled positions of the movement distance and the corresponding scanning amplitudes of the signal intensity. The hand-held scanning system ascertains the sampled positions corresponding to a former scanning amplitudes and a present scanning amplitudes according to the look-up table during the scanning stage for detecting the position variation status to determine whether the trigger signal is activated for image scanning or not.
Abstract:
An optical scanning apparatus includes a housing, light source, deflector, imaging lens, reflective mirrors, a synchronization detector and synchronization detection mirror. The housing has a plate to partition the housing. The deflector deflects a light beam emitted from the light source. The imaging lens converts the deflected light beam into a constant speed scanning light beam. The reflective mirrors reflect the constant speed scanning light beam to a photoreceptor. The synchronization detector detects timing for starting scanning of the photoreceptor. The synchronization detection mirror reflects the light beam to the synchronization detector. At least one of the reflective mirrors is disposed midway in a synchronization detection light path extending from the deflector to the synchronization detection mirror. The light beam reflected by the synchronization detection mirror is reflected again by at least one of the reflective mirrors, such that the light beam is guided to the synchronization detector.
Abstract:
A light scanning device includes a movable section having a light reflecting section adapted to reflect light, oscillating around an oscillation axis, and having a variable magnitude of a maximum deflection angle of the oscillating, and a detection section adapted to detect the maximum deflection angle of the movable section, and the detection section includes a light source adapted to emit light to the light reflecting section, a light receiving section adapted to receive reflected light, which is the light emitted from the light source and then reflected by the light reflecting section, and a displacement driving section adapted to change a position of the light source in accordance with the maximum deflection angle of the movable section.
Abstract:
An optical beam scanning apparatus is disclosed, including: a laser source that emits an optical beam, a deflection part that deflects the optical beam, a light receiving part that receives a returning light of the optical beam which is deflected toward the laser source by the deflection part, a signal generation part that generates a synchronization detection signal, and an optical source drive part that conducts a lighting control of the laser source. The light receiving part is arranged in vicinity to the laser source. The signal generation part detects a timing at which the light receiving part receives the returning light, by an output signal from the light receiving part to generate the synchronization detection signal. The optical source drive part conducts the lighting control of the laser source in response to the synchronization detection signal as a reference.
Abstract:
An image forming apparatus having: a light source for emitting a beam; a deflector for deflecting the beam; a light receiving element for receiving the beam and generating a detection signal; a converter for converting electric potentials of the detection signal into data values and generating time data associated with the data values; and a first calculator for calculating a position of center of the beam from the data values and the time data.
Abstract:
An optical scanner includes: a light source; a light deflector configured to deflect a light beam from the light source in a main scanning direction; a scanning lens through which the light beam having been deflected by the light deflector passes; a beam detector configured to detect the light beam; a mirror disposed between the light deflector and the scanning lens in an optical axis direction of the scanning lens and configured to reflect the light beam having been deflected by the light deflector toward the beam detector; and a wall portion configured to cover one end face of the mirror that faces the scanning lens, wherein the surface of the wall portion facing the scanning lens is tilted with respect to a sub-scanning direction orthogonal to the main scanning direction.