Abstract:
Estimating a compression gain obtainable in compressing a given audio signal, comprising extracting a signal power in a selected frequency band of the given audio signal, and obtaining an estimation of the compression gain by correlation with the extracted signal power.
Abstract:
Processing an audio signal is provided, which processing comprises conversion of the audio signal into a digital signal by a noise-shaping modulation, compressive encoding of the digital signal at a predetermined sampling rate into a compressed digital signal, and supplying the compressed digital signal, wherein the noise-shaping modulation is adaptive in response to at least one parameter.
Abstract:
Estimating a compression gain obtainable in compressing a given audio signal, comprising extracting a signal power in a selected frequency band of the given audio signal, and obtaining an estimation of the compression gain by correlation with the extracted signal power.
Abstract:
A method of controlling a sigma delta modulator with a loop which establishes a signal transfer function, STF, and a quantization noise transfer function, NTF, of the sigma delta modulator, wherein the sigma delta modulator receives an input signal, x(n), and provides a modulated output signal, y(n) in response to the input signal. The method is characterized in comprising the step of controlling the sigma delta modulator to change the quantization noise transfer function, NTF, in response to a signal feature, A(n), which is correlated with the input signal.
Abstract:
A system and method for adaptive sigma-delta modulation. The system includes a input stage that produces a difference signal representing the difference between an analog input signal x(n) and a analog feedback signal z(n), the amplitude of the analog input signal x(n) within a first range [−a, +a]. An accumulator stage produces a accumulated signal that is a function of an accumulation of the difference signal, the accumulator stage transforming the accumulation of the difference signal so as to increase average magnitude while ensuring instantaneous magnitude does not exceed a predetermined value. A quantization stage produces a quantized digital signal y0(n) representing the accumulated signal. Based on the quantized digital signal y0(n), a adaptation stage produces a digital output signal z0(n), which is converted to the analog feedback signal z(n) by a digital-to-analog converter stage.
Abstract:
A multi-bit sigma-delta analog to digital converter has a quantizer, a loop filter circuit, and a digital to analog feedback circuit. The quantizer, loop filter, and digital to analog feedback circuit have a loop gain associated therewith. The quantizer and loop filter have a combined gain associated therewith. The full-scale of the digital to analog feedback circuit is varied. The combined gain of the quantizer and loop filter is also varied. More specifically, the combined gain of the quantizer and loop filter is varied in inverse proportion to the full-scale of the digital to analog feedback circuit to maintain the loop gain at a substantially constant level.
Abstract:
A system and method for adaptive sigma-delta modulation. The system includes a input stage that produces a difference signal representing the difference between an analog input signal x(n) and a analog feedback signal z(n), the amplitude of the analog input signal x(n) within a first range [−a, +a]. An accumulator stage produces a accumulated signal that is a function of an accumulation of the difference signal, the accumulator stage transforming the accumulation of the difference signal so as to increase average magnitude while ensuring instantaneous magnitude does not exceed a predetermined value. A quantization stage produces a quantized digital signal y0(n) representing the accumulated signal. Based on the quantized digital signal y0(n), a adaptation stage produces a digital output signal z0(n), which is converted to the analog feedback signal z(n) by a digital-to-analog converter stage.
Abstract:
A system and method for adaptive sigma-delta modulation. The system includes a input stage that produces a difference signal representing the difference between an analog input signal x(n) and a analog feedback signal z(n), the amplitude of the analog input signal x(n) within a first range [−a, +a]. An accumulator stage produces a accumulated signal that is a function of an accumulation of the difference signal, the accumulator stage transforming the accumulation of the difference signal so as to increase average magnitude while ensuring instantaneous magnitude does not exceed a predetermined value. A quantization stage produces a quantized digital signal y0(n) representing the accumulated signal. Based on the quantized digital signal y0(n), a adaptation stage produces a digital output signal z0(n), which is converted to the analog feedback signal z(n) by a digital-to-analog converter stage.
Abstract:
A system and method for adaptive sigma-delta modulation. The system includes a input stage that produces a difference signal representing the difference between an analog input signal x(n) and a analog feedback signal z(n), the amplitude of the analog input signal x(n) within a first range [−a, +a]. An accumulator stage produces a accumulated signal that is a function of an accumulation of the difference signal, the accumulator stage transforming the accumulation of the difference signal so as to increase average magnitude while ensuring instantaneous magnitude does not exceed a predetermined value. A quantization stage produces a quantized digital signal y0(n) representing the accumulated signal. Based on the quantized digital signal y0(n), a adaptation stage produces a digital output signal z0(n), which is converted to the analog feedback signal z(n) by a digital-to-analog converter stage.
Abstract:
A system and method for adaptive sigma-delta modulation. The system includes a input stage that produces a difference signal representing the difference between an analog input signal x(n) and a analog feedback signal z(n), the amplitude of the analog input signal x(n) within a first range [−a, +a]. An accumulator stage produces a accumulated signal that is a function of an accumulation of the difference signal, the accumulator stage transforming the accumulation of the difference signal so as to increase average magnitude while ensuring instantaneous magnitude does not exceed a predetermined value. A quantization stage produces a quantized digital signal y0(n) representing the accumulated signal. Based on the quantized digital signal y0(n), a adaptation stage produces a digital output signal z0(n), which is converted to the analog feedback signal z(n) by a digital-to-analog converter stage.