Abstract:
A method and apparatus for designing an ESD protection circuit comprising a main ESD device and a triggering device connected to a triggering node of the main ESD device by means of which the main ESD device can be triggered for conducting ESD current at a reduced voltage. The triggering device is located in an initial current path for the ESD current. In this initial current path, there is at least one triggering component which can be triggered from an off-state to an on-state. The triggering speed of this component is considered and its design is optimised in view of increasing its triggering speed. Further shown is an ESD protection circuit in which at least one triggering component is selected to be of a predetermined type for achieving a fast triggering speed, preferably of the gated diode type.
Abstract:
A hysteresis circuit according to the invention has a thyristor circuit 101 which outputs a low voltage in an on-stage thereof, and outputs a high voltage in an off-state thereof. When an input voltage exceeds the threshold voltage of a first switching circuit 102, the circuit 102 turns on the thyristor circuit. On the other hand, when the input voltage exceeds the threshold voltage of a second switching circuit 103, the circuit 103 turns off the thyristor circuit.
Abstract:
A relay driver circuit, suitable for controlling a bistable relay, includes .[.a storage device which is charged to a first voltage level by a low current flow voltage source..]. .Iadd.a transformer which handles both an information signal and a control signal and a storage device. The control signal is provided by a low current low voltage source. .Iaddend.A first switching circuit couples the storage device to the bistable relay when the first voltage level exceeds a predetermined value. The charge on the storage device is dumped into the relay and forces it into a first state (set). A second switching circuit is coupled to sense the voltage on the storage device and the voltage on the low voltage source. When the voltage on the low voltage source falls below the voltage on the storage device, current flows from the storage device and forces the relay into a second state (reset). The reset time is within 100 .mu.s.
Abstract:
A solid state remotely actuable switch includes at least one solid state bilateral switch having a first and a second terminal connected in series with the telephone circuit and a gate for rendering the switch conductive between the terminals in response to a specific gate trigger current. A solid state unilateral switch is provided for each bilateral switch, which includes first and second terminals and a gate for actuating the unilateral switch between the terminals in response to a telephone operation voltage. A diode bridge circuit having positive and negative terminals connects the gate and second terminal of the bilateral switch to the first and second terminals of the unilateral switch. A solid state avalanche device is connected between the first terminal of the unilateral switch and the positive terminal of the bridge circuit. The unilateral switch is rendered nonconductive in response to a control signal from the central office to render the bilateral switch nonconductive for disconnecting the remote circuit.
Abstract:
A logic comparator circuit and system for testing the operation of an operating logic circuit installed a powered system against the operation of a known good, or reference, logic circuit of the same type or style. This is accomplished by applying the power, return and input signals of the operating logic circuit to the reference logic circuit and then comparing the corresponding output signals of each to detect improper operation. The present invention makes the interconnection of the two logic circuits to the logic comparator simple by only requiring that the user designate which terminals of the logic circuits are for power and return. The present logic circuit is provided with means for automatically discriminating between input and output terminals of the two logic circuits, and for clamping a free floating terminal of the operating logic circuit so that it may be detected repeatably.
Abstract:
a threshold current gate provides a diversion path for substantially all input current lower than a threshold value applied to the trigger electrode of a switch, such as a semiconductor controlled rectifier (SCR), thereby inhibiting switch triggering. When the input current exceeds the threshold value, that portion which exceeds the same flows into and triggers the switch.
Abstract:
A transistorized active switch radar pulse modulator has a unique means for pulse current control which includes a transformer interconnected with a magnetron. Transistor switches and related circuitry pulse a step up transformer with voltage pulses to drive the magnetron with a desired current pulse having the appropriate shape and width. A capacitor in the secondary of the transformer acts as a load to the transformer prior to the conduction level of the magnetron so that no current transients occur after the magnetron fires. Suitable protective features operate to sense an arcing condition and to dissipate the arcing effects. A unique slope control circuit insures that the requisite flat current pulse drives the magnetron.
Abstract:
A control device includes a triac and a first diode that is series-connected between the triac and a first terminal of the device that is configured to be connected to a cathode gate of a thyristor. A second terminal of the control device is configured to be connected to an anode of the thyristor. The triac has a gate connected to a third terminal of the device that is configured to receive a control signal. The thyristor is a component part of one or more of a rectifying bridge circuit, an in-rush current limiting circuit or a solid-state relay circuit.
Abstract:
A current switching system is described. This system includes first and second mirrored devices coupled to each other and a coupled terminal, and the first and second mirrored devices are coupled to an input terminal and an output terminal; a storage element in element in parallel with the first mirrored device and the first degeneration device; a variable impedance device coupled between the coupled terminal and a low voltage device; and a current mirroring accuracy enhancing circuit coupled between the coupled terminal and a high voltage device, wherein the variable impedance device dynamically changes a current at the coupled terminal to a second level depending when a threshold is met, and an impedance on the coupled terminal remains low both before switching and during switching.
Abstract:
A switch assembly including a switch (e.g., an electronic switch) and a controller connected to the switch to control the switch. The switch assembly can also include a power supply connectable to a power source and connected to the controller. The power supply is configured to receive power from the power source and controllably power the controller. The switch assembly can also include a generator and decision logic. The switch assembly can be used in an electric machine (e.g., a motor).