Abstract:
Apparatuses and methods for calibrating adjustable impedances of a semiconductor device are disclosed in the present application. An example apparatus includes a register configured to store impedance calibration information and further includes programmable termination resistances having a programmable impedance. The example apparatus further includes an impedance calibration circuit configured to perform a calibration operation to determine calibration parameters for setting the programmable impedance of the programmable termination resistances. The impedance calibration circuit is further configured to program the impedance calibration information in the register related to the calibration operation.
Abstract:
An integrated receiver with channel selection and image rejection substantially implemented on a single CMOS integrated circuit is described. A receiver front end provides programmable attenuation and a programmable gain low noise amplifier. Frequency conversion circuitry advantageously uses LC filters integrated onto the substrate in conjunction with image reject mixers to provide sufficient image frequency rejection. Filter tuning and inductor Q compensation over temperature are performed on chip. The filters utilize multi track spiral inductors. The filters are tuned using local oscillators to tune a substitute filter, and frequency scaling during filter component values to those of the filter being tuned. In conjunction with filtering, frequency planning provides additional image rejection. The advantageous choice of local oscillator signal generation methods on chip is by PLL out of band local oscillation and by direct synthesis for in band local oscillator. The VCOs in the PLLs are centered using a control circuit to center the tuning capacitance range. A differential crystal oscillator is advantageously used as a frequency reference. Differential signal transmission is advantageously used throughout the receiver.
Abstract:
An integrated receiver with channel selection and image rejection substantially implemented on a single CMOS integrated circuit is described. A receiver front end provides programmable attenuation and a programmable gain low noise amplifier. Frequency conversion circuitry advantageously uses LC filters integrated onto the substrate in conjunction with image reject mixers to provide sufficient image frequency rejection. Filter tuning and inductor Q compensation over temperature are performed on chip. The filters utilize multi track spiral inductors. The filters are tuned using local oscillators to tune a substitute filter, and frequency scaling during filter component values to those of the filter being tuned. In conjunction with filtering, frequency planning provides additional image rejection. The advantageous choice of local oscillator signal generation methods on chip is by PLL out of band local oscillation and by direct synthesis for in band local oscillator. The VCOs in the PLLs are centered using a control circuit to center the tuning capacitance range. A differential crystal oscillator is advantageously used as a frequency reference. Differential signal transmission is advantageously used throughout the receiver.
Abstract:
An integrated receiver with channel selection and image rejection substantially implemented on a single CMOS integrated circuit is described. A receiver front end provides programable attenuation and a programable gain low noise amplifier. Frequency conversion circuitry advantageously uses LC filters integrated onto the substrate in conjunction with image reject mixers to provide sufficient image frequency rejection. Filter tuning and inductor Q compensation over temperature are performed on chip. The filters utilize multi track spiral inductors. The filters are tuned using local oscillators to tune a substitute filter, and frequency scaling during filter component values to those of the filter being tuned. In conjunction with filtering, frequency planning provides additional image rejection. The advantageous choice of local oscillator signal generation methods on chip is by PLL out of band local oscillation and by direct synthesis for in band local oscillator. The VCOs in the PLLs are centered using a control circuit to center the tuning capacitance range. A differential crystal oscillator is advantageously used as a frequency reference. Differential signal transmission is advantageously used throughout the receiver.
Abstract:
An integrated receiver with channel selection and image rejection substantially implemented on a single CMOS integrated circuit is described. A receiver front end provides programable attenuation and a programable gain low noise amplifier. Frequency conversion circuitry advantageously uses LC filters integrated onto the substrate in conjunction with image reject mixers to provide sufficient image frequency rejection. Filter tuning and inductor Q compensation over temperature are performed on chip. The filters utilize multi track spiral inductors. The filters are tuned using local oscillators to tune a substitute filter, and frequency scaling during filter component values to those of the filter being tuned. In conjunction with filtering, frequency planning provides additional image rejection. The advantageous choice of local oscillator signal generation methods on chip is by PLL out of band local oscillation and by direct synthesis for in band local oscillator. The VCOs in the PLLs are centered using a control circuit to center the tuning capacitance range. A differential crystal oscillator is advantageously used as a frequency reference. Differential signal transmission is advantageously used throughout the receiver.
Abstract:
An integrated circuit comprises a biasing circuit for maintaining the transconductance of a Gm cell constant. The integrated circuit comprises an on-chip constant voltage source and an on-chip constant current source. The on-chip constant current source has a connection for an external resistance, the value of the external resistance determining the current generated by the constant current source. The biasing circuit comprises means for providing a first fraction (β) of the current generated by the on-chip current source to bias the output of the Gm cell, and means for providing a second fraction (α) of the voltage generated by the on-chip voltage source to bias the input of the Gm cell. The transconductance of the Gm cell is controlled to be equal to the ratio of said fraction of the current generated by the on-chip current source to said fraction of the voltage generated by the on-chip voltage source.
Abstract:
An integrated receiver with channel selection and image rejection substantially implemented on a single CMOS integrated circuit is described. A receiver front end provides programable attenuation and a programable gain low noise amplifier. Frequency conversion circuitry advantageously uses LC filters integrated onto the substrate in conjunction with image reject mixers to provide sufficient image frequency rejection. Filter tuning and inductor Q compensation over temperature are performed on chip. The filters utilize multi track spiral inductors. The filters are tuned using local oscillators to tune a substitute filter, and frequency scaling during filter component values to those of the filter being tuned. In conjunction with filtering, frequency planning provides additional image rejection. The advantageous choice of local oscillator signal generation methods on chip is by PLL out of band local oscillation and by direct synthesis for in band local oscillator. The VCOs in the PLLs are centered using a control circuit to center the tuning capacitance range. A differential crystal oscillator is advantageously used as a frequency reference. Differential signal transmission is advantageously used throughout the receiver.
Abstract:
An integrated receiver with channel selection and image rejection substantially implemented on a single CMOS integrated circuit is described. A receiver front end provides programmable attenuation and a programmable gain low noise amplifier. Frequency conversion circuitry advantageously uses LC filters integrated onto the substrate in conjunction with image reject mixers to provide sufficient image frequency rejection. Filter tuning and inductor Q compensation over temperature are performed on chip. The filters utilize multi track spiral inductors. The filters are tuned using local oscillators to tune a substitute filter, and frequency scaling during filter component values to those of the filter being tuned. In conjunction with filtering, frequency planning provides additional image rejection. The advantageous choice of local oscillator signal generation methods on chip is by PLL out of band local oscillation and by direct synthesis for in band local oscillator. The VCOs in the PLLs are centered using a control circuit to center the tuning capacitance range. A differential crystal oscillator is advantageously used as a frequency reference. Differential signal transmission is advantageously used throughout the receiver.
Abstract:
An integrated receiver with channel selection and image rejection substantially implemented on a single CMOS integrated circuit is described. A receiver front end provides programable attenuation and a programable gain low noise amplifier. Frequency conversion circuitry advantageously uses LC filters integrated onto the substrate in conjunction with image reject mixers to provide sufficient image frequency rejection. Filter tuning and inductor Q compensation over temperature are performed on chip. The filters utilize multi track spiral inductors. The filters are tuned using local oscillators to tune a substitute filter, and frequency scaling during filter component values to those of the filter being tuned. In conjunction with filtering, frequency planning provides additional image rejection. The advantageous choice of local oscillator signal generation methods on chip is by PLL out of band local oscillation and by direct synthesis for in band local oscillator. The VCOs in the PLLs are centered using a control circuit to center the tuning capacitance range. A differential crystal oscillator is advantageously used as a frequency reference. Differential signal transmission is advantageously used throughout the receiver.
Abstract:
A transconductance filter control system for compensating for drift in transconductance of a slave transconductance amplifier in a continuous time transconductance filter including: a master transconductance amplifier having an output which is a function of its transconductance and a control input for controlling the transconductance of the master transconductance amplifier; a tuning signal source for providing a tuning signal representative of a preselected characteristic of the transconductance filter; a comparing circuit, responsive to any deviation from a predetermined difference between the tuning signal and the output of the master transconductance amplifier, representative of a deviation of the transconductance of the master transconductance amplifier, for providing a compensation signal; and a circuit for applying the compensation signal to the control input of the master transconductance amplifier and to the control input of the slave transconductance amplifier in the transconductance filter to adjust the transconductance of both the master and slave transconductance amplifiers and restore the predetermined difference between the tuning signal and the output of the master transconductance amplifier.