Abstract:
There is provided a method for manufacturing a fuel cell, such as a hydrogen separation membrane fuel cell, having in its anode a hydrogen separation membrane (12f) selectively permeable by hydrogen. An electrolyte membrane (10) is formed on the hydrogen separation membrane, and the curvature of the electrolyte membrane is changed to generate a compressive stress in the electrolyte membrane.
Abstract:
A sintered electrolyte sheet comprising: a body of no more than 45 μm thick and laser machined features with at least one edge surface having at least 10% ablation. A method of micromachining the electrolyte sheet includes the steps of: (i) supporting a sintered electrolyte sheet; (ii) micromachining said sheet with a laser, wherein said laser has a wavelength of less than 2 μm, fluence of less than 200 Joules/cm2, repettion rate (RR) of between 30 Hz and 1 MHz, and cutting speed of preferably over 30 mm/sec.
Abstract:
An electrolyte plate for an electrochemical system including a first and a second face opposite to each other of larger surface areas, both faces being separated by a given distance. The first face includes linear protrusions and the second face includes linear recesses, the protrusions and the recesses being substantially parallel to each other. Each protrusion is superposed to a recess along a direction substantially orthogonal to a mean plane of the plate, the distance separating a bottom of each recess from a vertex of the superposed protrusion being substantially equal to the distance between the first and the second face so that the electrolyte plate has a substantially constant thickness.
Abstract:
A thin plate member is a thin plate member that is formed by sintering, contains a ceramic layer, and comprises a thin part having two or more types of layers laminated, each of which is made of a material having a different thermal expansion coefficient, and a thick part that is made by laminating plural layers including at least all of the layers constituting the thin part, and has a thickness greater than the thickness of the thin part. The thin part has a shape warping in the direction perpendicular to the plane of the thin plate member. By virtue of this configuration, the internal electrical resistance of the thin part can be reduced. Further, the thin plate member can be provided that is difficult to be deformed with respect to the internal stress caused by the difference in thermal expansion coefficient between layers.
Abstract:
Disclosed is a fuel cell having a single body support, which includes a single body support including a plurality of unit supports and a connector for connecting the plurality of unit supports in parallel, an air electrode layer formed on an outer surface of the single body support, an electrolyte layer formed on an outer surface of the air electrode layer, and a fuel electrode layer formed on an outer surface of the electrolyte layer, so that the fuel cell is stably supported thus increasing durability and reliability.
Abstract:
A cell of a solid electrolyte direct-flame fuel cell generates power in a state that the cell is placed inside or in the vicinity of a flame (16). The cell is configured in such a manner that a cathode layer (14) is formed on one surface of a solid electrolyte layer (10) and an anode layer (12) is formed on the other surface. The cell is characterized by being curved so that the anode layer side has a concave shape and the cathode layer side has a convex shape.
Abstract:
The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.
Abstract:
A solid oxide fuel cell includes a membrane electrode assembly including an anode, a cathode, and a solid oxide electrolyte membrane disposed between the anode and the cathode; and a porous conductive support disposed at one surface or both surfaces of the membrane electrode assembly. Both the membrane electrode assembly and the porous conductive support have an uneven structure, and are coupled to each other in a male and female coupling manner.
Abstract:
A fuel cell has a stack structure in which fired sheet bodies (laminates each including a fuel electrode layer, a solid electrolyte layer, and an air electrode layer) and support members for supporting the sheet bodies are stacked in alternating layers. Each of the sheet bodies is warped downward (toward an air-electrode-layer side). Because of a magnitude relationship of thermal expansion coefficient among the layers in the sheet body and that between the support member and the sheet body, a warp height gradually lessens in the course of temperature rise at start-up. However, even when a working temperature (800° C. or the like) is reached, the sheet bodies are still warped downward. By virtue of presence of the warp, the sheet bodies become unlikely to be deformed at the working temperature.
Abstract:
There is provided a method for manufacturing a fuel cell, such as a hydrogen separation membrane fuel cell, having in its anode a hydrogen separation membrane (12f) selectively permeable by hydrogen. An electrolyte membrane (10) is formed on the hydrogen separation membrane, and the curvature of the electrolyte membrane is changed to generate a compressive stress in the electrolyte membrane.