Abstract:
A drift tube construction includes a thin wall aluminum tube with a thin wire at its center attached to a terminal. The tube is plugged at both ends. The terminal is embedded at the center of the plug with material insulating it from Drift tube main body. The Drift tube assembly is sealed and filled with a gas mixture. A voltage is applied to the thin wire via the terminal. Current drift tubes employ plastic material to insulate the terminal from Drift tube main body and O-rings to provide a near hermetic seal.
Abstract:
A radiation detection assembly that includes an ionization chamber having a cathode and an anode. The ionization chamber detects radiation that passes into the ionization chamber. The assembly includes an exterior enclosure defining a hollow internal volume within which the ionization chamber is enclosed. The exterior enclosure includes at least two layers. At least one of the layers provides an electromagnetic shield to the hollow internal volume and the ionization chamber enclosed therein.
Abstract:
A radiation detector system and method that significantly reduces the cost of conventionally constructed radiation detectors is disclosed. The disclosed system generally comprises an injection molded detector body incorporating plastic material with embedded feed-thrus that are encapsulated within the detector body. This detector body is mated to a detector window assembly using a gasket or other means of sealing to inhibit gas leakage. The mating methodology between the detector body and the detector window assembly is by means of plastic snap-on tabs in these structures that permit semi-permanent mating while also allowing the structures to be easily disassembled for repair and maintenance. The present invention system/method permits a significant hardware cost reduction as compared to conventional prior art radiation detector construction methodologies.
Abstract:
An ionizing radiation detector comprising a plurality of conductive tubes arranged in parallel fashion containing a gas mixture under pressure, a conductive wire being tensed at the center of each tube and adapted to being polarized with respect thereto, and comprising first and second tight enclosures each having a wall provided with openings in which are tightly inserted the first and second ends of each tube, the ends of each tube being open.
Abstract:
An ionizing radiation detector comprising a plurality of conductive tubes arranged in parallel fashion containing a gas mixture under pressure, a conductive wire being tensed at the center of each tube and adapted to being polarized with respect thereto, and comprising first and second tight enclosures each having a wall provided with openings in which are tightly inserted the first and second ends of each tube, the ends of each tube being open.
Abstract:
A position-sensitive ionizing-radiation counting detector includes a first substrate and a second substrate, and a defined gas gap between the first substrate and the second substrate. The first and second substrates comprise dielectrics and a discharge gas is contained between the first and second substrate. A microcavity structure comprising microcavities is coupled to the second substrate. An anode electrode is coupled to the first substrate and a cathode electrode is coupled to the microcavity structure on the second substrate. The detector further includes pixels defined by a microcavity and an anode electrode coupled to a cathode electrode, and a resistor coupled to each of the cathode electrodes. Each pixel may output a gas discharge counting event pulse upon interaction with ionizing-radiation. The detector further includes a voltage bus coupled to each of the resistors and a power supply coupled to at least one of the electrodes.
Abstract:
A radiation detection assembly includes an ionization chamber for detecting radiation. An exterior enclosure houses the ionization chamber within an interior volume. A pair of support structures support the ionization chamber with respect to the exterior enclosure. The support structures are disposed opposite each other at a surface of the ionization chamber such that the ionization chamber is symmetric with respect to an axis extending between the support structures. A method of supporting the radiation detection assembly is also provided.
Abstract:
A radiation detector system and method that significantly reduces the cost of conventionally constructed radiation detectors is disclosed. The disclosed system generally comprises an injection molded detector body incorporating plastic material with embedded feed-thrus that are encapsulated within the detector body. This detector body is mated to a detector window assembly using a gasket or other means of sealing to inhibit gas leakage. The mating methodology between the detector body and the detector window assembly is by means of plastic snap-on tabs in these structures that permit semi-permanent mating while also allowing the structures to be easily disassembled for repair and maintenance. The present invention system/method permits a significant hardware cost reduction as compared to conventional prior art radiation detector construction methodologies.
Abstract:
A position-sensitive ionizing-radiation counting detector includes a first substrate and a second substrate, and a defined gas gap between the first substrate and the second substrate. The first and second substrates comprise dielectrics and a discharge gas is contained between the first and second substrate. A microcavity structure comprising microcavities is coupled to the second substrate. An anode electrode is coupled to the first substrate and a cathode electrode is coupled to the microcavity structure on the second substrate. The detector further includes pixels defined by a microcavity and an anode electrode coupled to a cathode electrode, and a resistor coupled to each of the cathode electrodes. Each pixel may output a gas discharge counting event pulse upon interaction with ionizing-radiation. The detector further includes a voltage bus coupled to each of the resistors and a power supply coupled to at least one of the electrodes.