Abstract:
An ionizing radiation detector comprising a plurality of conductive tubes arranged in parallel fashion containing a gas mixture under pressure, a conductive wire being tensed at the center of each tube and adapted to being polarized with respect thereto, and comprising first and second tight enclosures each having a wall provided with openings in which are tightly inserted the first and second ends of each tube, the ends of each tube being open.
Abstract:
A method and apparatus for radiography and also a detector for detecting incident radiation. In the method and the apparatus X-rays (9) are emitted from an X-ray source (60). The X-rays which have interfered with an object to be imaged are detected (62) in a detector (64). The detector (64), which detects incident radiation includes a gaseous avalanche chamber, including electrode arrangements between which a voltage is applied for creating an electrical field, which causes electron-ion avalanches of primary and secondary ionization electrons released by incident radiation. The detector detects electrical signals in at least two detector electrode modules, the electrical signals being induced by electron-ion avalanches, in at least one of a plurality of detector electrode elements arranged adjacent to each other, each along a direction essentially parallel to the incident radiation, and where the at least two independent detector electrode modules are arranged along a direction essentially parallel to the incident radiation.
Abstract:
Apparatus and methods for measuring activity of radioactivity at a source location within an environment provided. The method in particular includes measuring emissions using an instrument as a measurement location, which instrument includes a detector, the instrument considering a detector field of view of the environment, which field of view includes a source location and providing an indication of detected emissions for that field of view, correcting the detected emissions to give emitted emissions in respect of that field of view, the correction being achieved by using a correction factor specific for that field of view, the correction factor accounting for one or more field of view format and/or the attenuation between the source location and the detector and/or the distance between the source location and the detector, the emitted emissions being indicative of the activity.
Abstract:
A gaseous supply system and method for operating the same is disclosed for supplying at least one gaseous source material to an ion source chamber for use with an ion implanter including at least one gas supply module in gaseous communication with an ion source chamber including at least one pneumatic valve to control the delivery of at least one gaseous source material to the ion source chamber for generation of source material ions for implantation including a driver gas source in communication with said at least one pneumatic valve for operating the at least one pneumatic valve said driver gas source having a different atomic mass unit than the source material ions for implantation generated from the at least one gaseous source material.