Abstract:
One embodiment relates to a high-voltage electron gun including an insulator stand-off having a resistive layer. The resistive layer is at least on an interior surface of the insulator stand-off. A cathode holder is coupled to one end of the insulator 115 stand-off, and an anode is coupled to the other end. The resistive layer advantageously increases the surface breakdown field strength for the insulator stand-off and so enables a compact design for the high-voltage electron gun. Other embodiments, aspects and feature are also disclosed.
Abstract:
One embodiment relates to a high-voltage electron gun including an insulator stand-off having a resistive layer. The resistive layer is at least on an interior surface of the insulator stand-off. A cathode holder is coupled to one end of the insulator 115 stand-off, and an anode is coupled to the other end. The resistive layer advantageously increases the surface breakdown field strength for the insulator stand-off and so enables a compact design for the high-voltage electron gun. Other embodiments, aspects and feature are also disclosed.
Abstract:
The disclosure relates to a detecting system including a terahertz wave source, a detector and a controlling computer. The terahertz wave source includes a terahertz reflection klystron including an electron emission unit, a resonance unit, an output unit. The electron emission unit is configured to emit electrons. The resonance unit includes a resonant cavity communicated with the electron emission unit so that the electron emission unit emit electrons into the resonant cavity. The resonant cavity of the electron emission unit opposite the cavity wall has an output aperture coupled. The output unit is communicated with the resonance unit by the output aperture coupled. The resonance unit generate terahertz wave transmit to the output unit by the output aperture coupled.
Abstract:
An electron tube includes a microwave structure, an electron gun having a cathode-wehnelt assembly, with axis for providing a linear electron beam along the same axis in a circular cylindrical passage with axis of the microwave structure, the cathode comprising a centre of rotation of the beam on the said axis of the cathode. The electron gun and the microwave structure each comprise portions of spherical surfaces in contact inscribed on one and the same sphere of radius centred on the centre of the cathode so as to form a swivel for angular adjustment of the axis of the cathode and to make the axis of the electron beam coincide with the axis of the circular cylindrical passage of the microwave structure. Applications include microwave electron tubes such as travelling wave tubes and klystrons.
Abstract:
A foilless intense relativistic electron beam generator uses an ionized cnel to guide electrons from a cathode passed an anode to a remote location.
Abstract:
A novel apparatus and method for focussing beams of charged particles comprising planar arrays of electrostatic quadrupoles. The quadrupole arrays may comprise electrodes which are shared by two or more quadrupoles. Such quadrupole arrays are particularly adapted to providing strong focussing forces for high current, high brightness, beams of charged particles, said beams further comprising a plurality of parallel beams, or beamlets, each such beamlet being focussed by one quadrupole of the array. Such arrays may be incorporated in various devices wherein beams of charged particles are accelerated or transported, such as linear accelerators, klystron tubes, beam transport lines, etc.
Abstract:
An improved traveling wave tube and method of manufacturing same is disclosed. The tube has an elongated housing with a central evacuated passageway. There are a plurality of beam focusing annular magnets supported within the housing around the passageway at predetermined spaced locations along the length of the passageway and a slow wave circuit supported within the housing in predetermined relationship with respect to the magnets. The housing is a pair of joined semi-cylindrical mating ceramic substrate halves, each half including semi-annular grooves along its part of the passageway which register with respective semi-annular grooves of the other half to define annular grooves which receive and support the magnets. The ceramic substrate halves have conductive material deposited therein that forms the slow wave circuit. The associated method comprises the steps of forming first and second semi-cylindrical substrate halves with rib-like constrictions and recesses for the slow wave circuit and grooves for the magnets, depositing the slow wave circuit in both halves providing magnets in the grooves; and joining the halves together with the grooves and slow wave portions on both halves in registration.
Abstract:
The disclosure relates to a detecting system including a terahertz wave source, a detector and a controlling computer. The terahertz wave source includes a terahertz reflection klystron including an electron emission unit, a resonance unit, an output unit. The electron emission unit is configured to emit electrons. The resonance unit includes a resonant cavity communicated with the electron emission unit so that the electron emission unit emit electrons into the resonant cavity. The resonant cavity of the electron emission unit opposite the cavity wall has an output aperture coupled. The output unit is communicated with the resonance unit by the output aperture coupled. The resonance unit generate terahertz wave transmit to the output unit by the output aperture coupled.