Abstract:
Multi-energy radiation sources comprising charged particle accelerators driven by power generators providing different RF powers to the accelerator, capable of interlaced operation, are disclosed. Automatic frequency control techniques are provided to match the frequency of RF power provided to the accelerator with the accelerator resonance frequency. In one example where the power generator is a mechanically tunable magnetron, an automatic frequency controller is provided to match the frequency of RF power pulses at one power to the accelerator resonance frequency when those RF power pulses are provided, and the magnetron is operated such that frequency shift in the magnetron at the other power at least partially matches the resonance frequency shift in the accelerator when those RF power pulses are provided. In other examples, when the power generator is a klystron or electrically tunable magnetron, separate automatic frequency controllers are provided for each RF power pulse. Methods and systems are disclosed.
Abstract:
Methods and systems for generating bremsstrahlung with enhanced photon flux in a narrow cone at forward angles utilize a thin target of a high-Z material such as gold as radiator, supported on a tube of a low-Z material such as titanium, which tube contains a circulating fluid such as water which acts as a coolant and also may absorb the incident electron beam.
Abstract:
The present invention relates to X-ray generating technology in general. Providing an electron collecting element of an X-ray generating device statically may allow for the manufacture of X-ray systems with reduced moving parts and actuating parts, possibly reducing manufacturing costs and sources for failure. Consequently, an electron collecting element with increased thermal loadability is presented. According to the present invention, an electron collecting element (28) is provided, comprising a surface element (22) and a heat conducting element (26). The heat conducting element (26) comprises a first thermal conductivity in a first direction and at least a second thermal conductivity in at least a second direction. The first thermal conductivity is greater than the second thermal conductivity. The first direction is substantially perpendicular to the surface element (22).
Abstract:
Man-portable radiation generation sources and systems that may be carried by hand to a site of interest by one or two people, are disclosed. Methods of use of such sources and systems are also disclosed. Battery operated radiation generation sources, air cooled radiation generation sources, and charged particle accelerators, are also disclosed. A radiation generation source, a radiation scanning system, and a target assembly comprising target material having a thickness of less than 0.20 mm are also disclosed.
Abstract:
The present invention is directed to an anode for an X-ray tube. The X-ray tube has an electron aperture through which electrons emitted from an electron source travel subject to substantially no electrical field and a target in a non-parallel relationship to the electron aperture and arranged to produce X-rays when electrons are incident upon a first side of the target, wherein the target further comprises a cooling channel located on a second side of the target. The cooling channel comprises a conduit having coolant contained therein. The coolant is at least one of water, oil, or refrigerant.
Abstract:
Methods and systems for generating bremsstrahlung with enhanced photon flux in a narrow cone at forward angles utilize a thin target of a high-Z material such as gold as radiator, supported on a tube of a low-Z material such as titanium, which tube contains a circulating fluid such as water which acts as a coolant and also may absorb the incident electron beam.
Abstract:
Strain matching of crystals and horizontally-spaced monochromator and analyzer crystal arrays in diffraction enhanced imaging systems and related methods are disclosed. A DEI system, including strain matched crystals can comprise an X-ray source configured to generate a first X-ray beam. A first monochromator crystal can be positioned to intercept the first X-ray beam for producing a second X-ray beam. A second monochromator crystal can be positioned to intercept the second X-ray beam to produce a third X-ray beam for transmission through an object. The second monochromator crystal has a thickness selected such that a mechanical strain on a side of the first monochromator crystal is the same as a mechanical strain on the second monochromator crystal. An analyzer crystal has a thickness selected such that a mechanical strain on a side of the first monochromator crystal is the same as a mechanical strain on the analyzer crystal.
Abstract:
An x-ray target pedestal assembly and a method of protecting the x-ray target from breaking down as a result of the extreme heat that is produced when an electron beam is aimed at the target to produce x-rays. The target is submerged in cooling fluid and is rotated by a constant flow of the cooling fluid over and around the target in order to dissipate heat. The fluid is guided by integrated flow diverters in the target cover. The target may also be protectively coated either in its entirety or along the electron beam path in order to further protect it from the heat of the electron beam impact or from breakdown as a result of attack of free radicals or other chemically reactive components of the cooling fluid which are produced in the extreme target environment.
Abstract:
In an x-ray system and a method for tomosynthetic scanning of a subject, x-ray radiation is emitted from two x-ray sources that are panned relative to the subject during a tomosynthetic scan. The two x-ray sources each emit an x-ray beam, the respective x-ray beams being parallel to each other with regard to their beam directions proceeding toward the subject. X-rays from the two parallel beams attenuated by the subject are detected by a two-dimensional x-ray detector, that is substantially stationary during the tomosynthetic scan.
Abstract:
The present invention is directed to an anode for an X-ray tube. The X-ray tube has an electron aperture through which electrons emitted from an electron source travel subject to substantially no electrical field and a target in a non-parallel relationship to the electron aperture and arranged to produce X-rays when electrons are incident upon a first side of the target, wherein the target further comprises a cooling channel located on a second side of the target. The cooling channel comprises a conduit having coolant contained therein. The coolant is at least one of water, oil, or refrigerant.