Abstract:
Power umbilical (1) comprising a plurality of power cables (7) for electric power transmission, elongated filler elements (5), and an outer sheath (3). The elongated filler elements (5) abut against each other at abutment faces (5a), thereby forming a complete ring enclosing the power cables (7). The elongated filler elements (5) comprise cable recesses (5b) within which the power cables (7) are embedded. The power umbilical (1) further comprises one or more friction control profiles (13, 15, 116), wherein the material of the friction control profile (13, 15, 116) is softer than the material of the elongated filler elements (5). The one or more friction control profiles (13, 15) are arranged in a deformed state.
Abstract:
A self-supporting electric power cable is disclosed. The electric power cable includes an outer jacket portion and a core portion. The core portion includes at least one insulated conductor and at least one supporting cord. The at least one insulated conductor includes a number of individual wires, and the at least one supporting cord includes synthetic fibres. The number of individual wires, individually or arranged in bundles, are arranged in a first lay direction. The at least one insulated conductor and the at least one supporting cord are arranged in a second lay direction. The at least one supporting cord is arranged as a separate unit in a cross sectional sector of the self-supporting electric power cable. Thus flexible and durable power cable for sea use is provided. Also an offshore arrangement is disclosed herein.
Abstract:
Electrical conductors and processes for making and using same. In some examples, the electrical conductors can include an inner electrically conductive element, which can define a central longitudinal axis. A first polymer layer can be disposed circumferentially about the inner electrically conductive element. A plurality of electrical conductor segments can be disposed about the first polymer layer and spaced around the central longitudinal axis. A second polymer layer can be disposed between the electrical conductor segments. The second polymer layer and the electrical conductor segments together can define a substantially annular cross-sectional area and an outer perimeter surface. An electrical insulator can be disposed about the outer perimeter surface defined by the second polymer layer and the electrical conductor segments.
Abstract:
A high voltage power cable (1) includes at least two insulated conductors (2) and an armor package (6) surrounding the conductors (2). The cable (1) has a longitudinal central element (4) of an elastic material, and longitudinal elements (3) of polymer material placed between the said insulated conductors (2).
Abstract:
A power cable (30, 130, 230, 330, 430, 530) includes an outer sheath (32), at least one conductor element (20, 22, 24, 220, 320, 420, 520) arranged within the outer sheath and one or more filler elements (10, 210, 310,410, 510) arranged within the outer sheath. At least one of the filler elements is hollow such that a cooling fluid can be passed through the filler element.
Abstract:
A gas turbine engine installation is provided that has a flexible printed circuit board (FPCB) harness to transfer electrical signals, including electrical power, around a gas turbine engine. The FPCB harness is held to the gas turbine engine installation using clips. The clips have a jaw that has two sets of opposing teeth extending from a base, and a mouth through which the FPCB harness is inserted. The teeth point in a direction that has a component from the mouth to the teeth. This means that the force required to insert the FPCB harness into the clip is lower than the force required to pull the FPCB harness out of the clip in the opposite direction. This means that the FPCB harness can be secured in place while aiding ease of assembly.
Abstract:
An umbilical for use in the offshore production of hydrocarbons, and in particular a power umbilical for use in deep water applications, is described comprising a plurality of longitudinal strength members, wherein at least one longitudinal strength member comprises rope comprising high strength organic fibers having a tensile modulus >100 GPa. In this way, the or each longitudinal strength member being such a rope achieves the synergistic benefit of favorable mechanical properties in the axial direction, with weight reduction and other favorable mechanical properties, especially during tensioning or the like of the umbilical, more especially during manufacture, installation and/or repair. With weight reduction, longer umbilicals for deeper water can be made and used.
Abstract:
A submarine power cable (10) has an electrical conductor (1) surrounded by an insulation (2,3,4), said insulation being surrounded by a metallic moisture barrier (5) characterized in that the cable (10) further comprises a semi-conductive adhesive layer (6) surrounding said metallic moisture barrier (5), and a semi-conductive polymeric jacket (7) able to be in electrical contact with sea water surrounding said semi-conductive adhesive layer (6), the overlaying of the metallic moisture barrier (5), the semi-conductive adhesive layer (6) and the semi-conductive polymeric jacket (7) forming a 3-layer sheath.
Abstract:
An electric power sea cable including at least one cable core. The cable core includes an electric conductor, an electric insulation surrounding the conductor, and a protective sheath surrounding the electric insulation and acting as a water barrier. At least one outer layer surrounds the at least one cable core. The protective sheath is made of metal and the electrical power sea cable includes at least one friction reducing layer surrounding the at least one cable core and arranged inside of the at least one outer layer.
Abstract:
An umbilical (600) for the transfer of fluids and/or electric current/signals, particularly between the sea surface and equipment deployed on the sea bed (e.g., in deep waters), is provided. The umbilical contains a plurality of elongated umbilical elements (e.g., two or more), such as a channel element (603), fluid pipe (604), electric conductor/wire (606) (e.g., optic fiber cable), armoring wire, etc., enclosed within an outer sheath (e.g., plastic sheath). The umbilical also contains at least one reinforcing rod (607) formed from a plurality of unidirectionally aligned fiber rovings embedded within a thermoplastic polymer matrix. The present inventors have discovered that the degree to which the ravings are impregnated with the thermoplastic polymer matrix can be significantly improved through selective control over the impregnation process, and also through control over the degree of compression imparted to the ravings during formation and shaping of the rod, as well as the calibration of the final rod geometry. Such a well impregnated rod has a very small void fraction, which leads to excellent strength properties for reinforcing the umbilical elements.