Abstract:
A reflector assembly for a molten chloride fast reactor (MCFR) includes a support structure with a substantially cylindrical base plate, a substantially cylindrical top plate, and a plurality of circumferentially spaced ribs extending between the base plate and the top plate. The support structure is configured to encapsulate a reactor core for containing nuclear fuel. The MCFR also includes a plurality of tube members disposed within the support structure and extending axially between the top plate and the bottom plate. The plurality of tube members are configured to hold at least one reflector material to reflect fission born neutrons back to a center of the reactor core.
Abstract:
The invention relates to the field of nuclear engineering, and more particularly to designs for removable neutron reflector blocks for heavy liquid metal-cooled fast neutron reactors. The present fast neutron reactor contains a core consisting of heavy liquid metal-cooled fuel rods, and neutron reflector blocks, disposed around the core, which comprise a steel casing with at least one inlet opening in the side walls thereof above the core boundary, said inlet opening being intended for diverting part of the coolant flow from the space between the blocks into the casing, and at least one vertical pipe mounted in the casing, through which the diverted coolant flow, which has passed through the upper and lower boundaries of the core, enters the bottom part of the casing; also, on the outer side of the casing, above the inlet opening, there is mounted a throttling device for creating hydraulic resistance to the coolant flow in the space between the blocks. The technical result is an increase in the operating safety and the performance of a fast neutron reactor and a reduction in the heat exchange surface of the steam generator.
Abstract:
In a gas-cooled solid-moderated high-temperature reactor where fuel elements are introduced into the core through feed pipes in the ceiling reflector, the ceiling is cooled after reactor shutdown by introducing cooled gas through centrally arranged feed pipes and by removing the gas through the other feed pipes located radially outwardly of the inlet feed pipes. This arrangement effects a flow of the gas generally radially outwardly over the ceiling reflector. After the gas is removed from the core it is circulated through a closed circuit, cooled and blown back through the inlet feed pipes into the core.
Abstract:
An object is to efficiently take heat out of a reactor core while retaining fission products. Included are fuel part provided with a covering part on a surface of a nuclear fuel and a heat conductive part.
Abstract:
A nuclear reactor containment cooling system includes a containment vessel having a drywell and a wetwell, a cooling condenser submerged in a cooling pool of water located outside the containment vessel, a vent line extending from the condenser to a suppression pool disposed in the wetwell, and at least one drain line extending from the condenser to a condensate drain tank located in the drywell. An end of the drain line is vertically submerged below the surface of a pool of water in the drain tank. To enhance flow, a blower can be located in the drain line. The containment cooling system can include a drywell gas recirculation subsystem coupled to the vent line, and including a suction pipe coupled to the vent line, at least one valve located in the suction pipe, at least one blower coupled to the suction line, and a discharge pipe in flow communication with the drywell.
Abstract:
Gas-cooled high-temperature nuclear reactor having a reactor core comprising individual fuel elements provided with means for forming a barrier against the release of fission products producible therein during reactor operation, the fuel elements being received in a cylindrical barrel formed of an inner graphite layer functioning as a reflector, an outer layer of insulating material surrounding the inner layer, and a metallic receptacle, the inner and outer layers and the receptacle being formed of respective side, bottom and cover portions, the side and cover portions of the inner layer being formed with first channels into which means for controlling the reactors are insertable, the bottom, side and cover portions of the inner layer being further formed with second channels wherein, during reactor operation, cooling gas is circulated under pressure from the bottom to the top of the receptacle, the bottom portion of the inner layer having first openings for introducing cooling gas into the second channels during reactor operation and second openings for withdrawing during reactor operation cooling gas heated by passage through the reactor core; the inner and outer layers and the cylindrical core barrel having a heat conductivity and a thermal capacity and the reactor core having such a size, shape, power density and moderation ratio that a first temperature at which the core becomes subcritical for all possible accident conditions is below a second temperature at which the barrier means are destroyed, and, when loss of pressure of the cooling gas is experienced, after-heat generated in the core being removable by heat conduction and radiation through the inner and outer layers and the core barrel to a heat sink located outside the receptacle, in such a way that the fuel elements remain at a temperature below the second temperature.