Abstract:
An output buffer set is coupled to a first pair of pins and configured to output art audio output signal to the first pair of pins. A direct current (DC) shifting buffer set is coupled between the audio codec circuit and the first pair of pins, and is directly coupled to the output buffer set and the first pair of pins. An audio port is coupled to the first pair of pins. The DC shifting buffer set is configured to receive a first audio input signal from the audio port through the first pair of pins. The audio codec circuit is configured to record the audio output signal back and mix the recorded audio output signal with a second audio input signal, or mix the first audio input signal with a third audio input signal.
Abstract:
The subject disclosure is directed towards dynamically computing anti-aliasing filter coefficients for sample rate conversion in digital audio. In one aspect, for each input-to-output sampling rate ratio (pitch) obtained, anti-aliasing filter coefficients are interpolated based upon the pitch (e.g., using the fractional part of the ratio) from two filters (coefficient sets) selected based upon the pitch (e.g., using the integer part of the ratio). The interpolation provides for fine-grained cutoff frequencies, and by re-computation for each pitch, smooth anti-aliasing with dynamically changing ratios.
Abstract:
A method and a system for protecting data, a storage device, and a storage device controller are provided. In the present method, when a host accesses data in the storage device, whether the host performs a play operation or a copy operation on the data is first determined. If the host performs the play operation on the data, the storage device continues to execute the play operation so as to allow the host to access the data. On the other hand, if the host performs the copy operation on the data, the storage device executes an interference procedure so as to prevent or retard the data from being copied into the host.
Abstract:
Various methods and systems permit digital data, such as video data, audio/video data, audio/video/subpicture data and the like, to be processed in a manner that permits playback at different speeds in both forward and reverse directions. Various embodiments are also directed to handling playback rate changes in a manner that can enhance the experience of a user.
Abstract:
The subject disclosure is directed towards a technology that may be used in an audio processing environment. Nodes of an audio flow graph are associated with virtual mix buffers. As the flow graph is processed, commands and virtual mix buffer data are provided to audio fixed-function processing blocks. Each virtual mix buffer is mapped to a physical mix buffer, and the associated command is executed with respect to the physical mix buffer. One physical mix buffer mix buffer may be used as an input data buffer for the audio fixed-function processing block, and another physical mix buffer as an output data buffer, for example.
Abstract:
An optical storage medium playback apparatus includes an optical storage access device, a connection port, and a controller. The optical storage access device is implemented for reading a multimedia content from an optical storage medium. The controller is coupled to the optical storage access device and the connection port, and is implemented for storing a portion of the multimedia content read from the optical storage medium into an external storage via the connection port when the external storage is electrically connected to the connection port, and for accessing the portion of the multimedia content which is stored in the external storage electrically connected to the connection port and performing a playback operation upon data read from the optical storage medium concurrently.
Abstract:
A recording medium according to an embodiment of the present invention includes a base-view stream and a dependent-view stream. The base-view stream is used for monoscopic video playback. The dependent-view stream is used for stereoscopic video playback in combination with the base-view stream. The recording medium further includes a first file and a second file. The first file refers to the base-view stream in monoscopic video playback, and the second file refers to the base-view stream in stereoscopic video playback.
Abstract:
A playback device includes a reading unit that reads extent blocks from a recording medium. A switching unit extracts a main-view stream and a sub-view stream from the extent blocks. Each stream is stored in a different read buffer. A decoding unit reads and decodes each stream from a corresponding read buffer. A time (t) required for the decoding unit to decode all data blocks in one extent block is greater than or equal to the sum (t1+t2+t3) of a time (t1) required for the reading unit to read the data blocks except for the top data block in the extent block, a time (t2) required for the reading unit to start to read the top of a next extent block from the time of finishing reading the tail of the extent block, and a time (t3) required for the reading unit to read the top data block in the next extent block.
Abstract:
An optical disc apparatus includes a pause circuit for pausing data encoders upon receiving a pause signal so that a write operation may be paused without writing dummy data, thereby maintaining data succession. The optical disc apparatus also includes a circuit for accurately determining a write start location by referring to previously written data. A processor generates a pause signal when the amount of data in the optical drive apparatus data buffer is low, and removes the pause signal when additional data from a host is received. The processor may also automatically reduce the write speed of the optical disc apparatus upon a pause condition, thereby preventing the necessity for excessive pausing.
Abstract:
A storage device includes a storage medium, a nonvolatile memory, a head, a driving unit, and a processor. The driving unit drives the storage medium. The processor controls the storage device according to a process. The process includes receiving the data transmitted from the host, storing the data received into the nonvolatile memory, estimating a period of time from a time point of the reception of the data to a time point at which a usage rate of the nonvolatile memory becomes 100%, controlling the driving unit on the basis of comparison of the estimated period of time with a period of time before the storage medium is accessible, and writing the data stored in the nonvolatile memory to the storage medium by controlling the head in accordance with the control of the driving unit.