Abstract:
Systems, including methods and apparatus, for applying audio effects to a non-ambient signal, based at least in part on information received in an ambient audio signal. Exemplary effects that can be applied using the present teachings include generation of harmony notes, pitch-correction of melody notes, and tempo-based effects that rely on beat detection.
Abstract:
Melody and accompaniment audio signals are received and processed to identify one or more harmony notes and a harmony signal is produced based on the one or more harmony notes. Typically the melody note is identified and a spectrum of the accompaniment audio signal and is obtained, and one or more harmony notes are identified based on the melody note and the accompaniment spectrum. The melody, and accompaniment signals can be processed in real-time for combination with the harmony signal in an audio performance. In some examples, audio signals are processed and harmonies generated for subsequent performance based on, for example, MIDI files generated from the audio signals.
Abstract:
Tone pitch information is extracted from the received input note information. A scale is determined on the basis of retrieved tonality information. A reference scale note is determined on the basis of the extracted tone pitch information and the determined scale. A tone pitch of a harmony note is determined by counting scale notes which form the determined scale from the determined reference scale note until reaching a scale note designated by the retrieved degree information.
Abstract:
Melody and accompaniment audio signals are received and processed to identify one or more harmony notes and a harmony signal is produced based on the one or more harmony notes. Typically the melody note is identified and a spectrum of the accompaniment audio signal and is obtained, and one or more harmony notes are identified based on the melody note and the accompaniment spectrum. The melody, and accompaniment signals can be processed in real-time for combination with the harmony signal in an audio performance. In some examples, audio signals are processed and harmonies generated for subsequent performance based on, for example, MIDI files generated from the audio signals.
Abstract:
A pitch shift device provides pitch-shifted sounds based on performance sounds generated by an electronic string musical instrument. The pitch shift device has a device that detects vibrato. When vibrato is detected, an interpolation device of a pitch shift control device performs a control of interpolating for a pitch shift change in the musical sound signal accompanying a change in pitch shift information stored in a pitch information storage device and read out by a pitch shift readout device from a group of pitch shift information. Therefore, unnatural pitch changes in pitch-shifted sound can be suppressed.
Abstract:
In an electronic musical instrument for automatically a adding duet note, an apparatus, which can reduce the capacity of a memory for storing data used as a basis for selecting a duet note to be added, is disclosed. A chord depressed at a keyboard is specified by a chord specifying means, and a depressed melody note (highest note) is detected by a note detection device. According to these notes, duet note data, which can be added, is read out from a chord-notes weighting information storage area on the basis of chord constituting notes, and another duet note data, which can be added, is read out from a note weighting information storage area according to a relative note data of the highest note relative to the root note of the chord. These readout duet note data are subjected to a calculation, thus selecting a duet note. Therefore, duet note data corresponding in numbers to chords and relative notes need only be stored in the memory, thus reducing the capacity of the duet note data memory.
Abstract:
An electronic musical instrument is provided with an ad-lib melody data storage device for storing ad-lib melody data and an ad-lib switch so that, when the ad-lib switch is turned on, it will read the ad-lib melody data to automatically play an ad-lib melody. The access to the ad-lib melody data is performed according to a clock value, and the instrument is adapted to count up the clock value while the ad-lib switch is on, and moreover to hold or count up without resetting also while the ad-lib switch is off. This arrangement allows the reading start address to be varied each time the ad-lib switch is turned on, enabling ad-lib melodies to be played in great variety.
Abstract:
Systems, including methods and apparatus, for applying audio effects to a non-ambient signal, based at least in part on information received in an ambient audio signal. Exemplary effects that can be applied using the present teachings include generation of harmony notes, pitch-correction of melody notes, and tempo-based effects that rely on beat detection.
Abstract:
Systems, including methods and apparatus, for applying audio effects to a non-ambient signal, based at least in part on information received in an ambient audio signal. Exemplary effects that can be applied using the present teachings include generation of harmony notes, pitch-correction of melody notes, and tempo-based effects that rely on beat detection.
Abstract:
Systems, including methods and apparatus, for generating audio effects based on accompaniment audio produced by live or pre-recorded accompaniment instruments, in combination with melody audio produced by a singer. Audible broadcast of the accompaniment audio may be delayed by a predetermined time, such as the time required to determine chord information contained in the accompaniment signal. As a result, audio effects that require the chord information may be substantially synchronized with the audible broadcast of the accompaniment audio. The present teachings may be especially suitable for use in karaoke systems, to correct and add sound effects to a singer's voice that sings along with a pre-recorded accompaniment track.