摘要:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for an unmanned aerial system inspection system. One of the methods is performed by a UAV and includes receiving, by the UAV, flight information describing a job to perform an inspection of a rooftop. A particular altitude is ascended to, and an inspection of the rooftop is performed including obtaining sensor information describing the rooftop. Location information identifying a damaged area of the rooftop is received. The damaged area of the rooftop is traveled to. An inspection of the damaged area of the rooftop is performed including obtaining detailed sensor information describing the damaged area. A safe landing location is traveled to.
摘要:
A method of optimizing a cruise climb of an aircraft. The method includes using vertical navigation and lateral navigation to track the cruise climb; and using tracking of the cruise climb to adjust a climb rate of the aircraft to match an optimal climb rate.
摘要:
A method and system for determining in real time a vertical trajectory of an aircraft is provided. The method includes a step for providing an initial vertical trajectory comprising an initial phase for changing flight level according to a first slope, between a first point at a first altitude, and a second point at a second altitude, at least one step for modifying the vertical trajectory, comprising a phase for detecting a triggering element when the aircraft is at the first altitude, when said triggering element is detected, and a phase for determining a modified vertical trajectory, said modified vertical trajectory comprising a modified phase for changing flight level according to a second predefined slope, from a modified point at said first altitude, distinct from said first point, to said second altitude.
摘要:
Systems and methods for providing runway entry awareness and alerting. An exemplary system includes a processing device that determines pilot intent based on one of a manual runway selection, automatic runway selection, aircraft information received from one or more sensors or received clearance information; receives at least one of aircraft position or motion information; determines if a no access condition exists based on the received information, the stored airport information and the determined pilot intent; and generates at least one of a hold-short gate still image or animation, if the no access condition exists.
摘要:
An automatic takeoff apparatus for an aircraft includes: an altitude sensor; an airspeed sensor; an attitude angle sensor; a direction sensor; a takeoff command inputting section; and a control device for controlling a propulsion device and an control surface of the aircraft, wherein the control device includes: a takeoff run control section for realizing a takeoff run by controlling the propulsion device to provide a maximum output and by controlling the control surface to maintain the attitude angle and the traveling direction constant, in response to the takeoff command; a rotation control section for controlling the control surface to rotate when the airspeed exceeds a predetermined speed; and an ascending flight control section for controlling the propulsion device and the control surface to perform an ascending flight up to a target altitude with a predetermined speed maintained, when the altitude exceeds a predetermined altitude.
摘要:
An aircraft flight control system is provided for reducing the likelihood of an aircraft tailstrike. The flight control system includes a pitch command provided to a pitch control device for altering the aircraft's pitch attitude. The improvement is a system of altering the pitch command to avoid an aircraft tailstrike. The improvement includes determining a current tailskid closure rate and a current tail height; comparing the current tailskid closure rate with a threshold closure rate to determine an excess closure rate amount; and adding an incremental nose-down pitch command with the pitch command to avoid a potential aircraft tailstrike. The threshold closure rate is dependent upon the current tailskid height. The incremental nose-down pitch command is calculated as a function of the excess closure rate amount. An alternative embodiment is provided in which the current height is compared with a threshold height (that is a function of the current tailskid closure rate) to determine an excess height amount. The excess height is then used to form an incremental nose-down pitch command. Another embodiment is described using both height and rate thresholds to calculate the incremental nose-down pitch command. Alternative arrangements may be used in which other non-derivative and derivative values are used, e.g., pitch angle margin and pitch rate.
摘要:
AN ACTUAL SLOPE COMPUTING SYSTEM FOR INDICATING, AT ANY MOMENT, ON BOARD AN AIRCRAFT, THE DEVIATION BETWEEN THE ACTUAL FLIGHT PATH OF THE AIRCRAFT AND A PRESELECTED NONHORIZONTAL NONLINEAR PATH INCLUDING A FIRST LINEAR PRESELECTED PATH AND A LAST LINEAR PRESELECTED PATH, SAID SYSTEM COMPRISING A COMPUTING UNIT FOR COMPUTING AT ANY MOMENT THE VALUE OF THE ALTITUDE H NECESSARY FOR SAID AIRCRAFT TO FOLLOW A NONHORIZONTAL LINEAR PATH, AS A FUNCTION OF GIVEN PARAMETERS OF SAID FIRST PATH, AND A MEMORY AND LOGIC CIRCUITS FOR FEEDING TO SAID COMPUTING UNIT, AT MOMENTS DETERMINED AS A FUNCTION OF THE POSITION OF SAID AIRCRAFT, SUCCESSIVELY THE PARAMETERS OF SAID FIRST PATH, OF SUCCESSIVE PROGRAMMED LINEAR PORTIONS OF SAID PRESELECTED PATH, AND OF SAID LAST PATH, SAID PROGRAMMED LINEAR PORTIONS BEING PROGRAMMED FOR INSURING A PROGRESSIVE MERGER OF THIS FIRST PATH SAID LAST PATH.
摘要:
Systems, devices, and methods for a fleet of three or more unmanned aerial vehicles (UAVs), where each UAV of the fleet of UAVs comprise a respective flight control computer (FCC); at least one computing device at a ground control station, where each computing device is in communication with each FCC, and where each computing device is associated with at least one operator; where the fleet of UAVs above the threshold altitude are in communication with the first computing device monitored by at least one operator such that a ratio of operators to UAVs above the threshold altitude exceeds a 1:1 ratio; and where the first UAV below the threshold altitude is in communication with the second computing device monitored by at least one operator such that a ratio of operators to UAVs below the threshold altitude does not exceed the 1:1 ratio.