Abstract:
Flexographic printing members are prepared from a flexographic printing plate precursor consisting essentially of: backing film, water- or water-dispersible photosensitive layer, and cover sheet in contact with the photosensitive layer. The cover sheet is removed and a mask element is laminated directly in contact with the photosensitive layer. Exposure through the mask element provides exposed regions and non-exposed regions. The non-exposed regions are removed with an aqueous developer having: a) a C12-20 saturated or unsaturated fatty acid (or alkali metal salt) at 0.25-2.0 weight %, and at least 85 weight % of a C18 mono- or poly-unsaturated fatty acid (or alkali metal salt); b) an aminopolycarboxylic acid (or alkali metal salt) at 0.05-0.30 weight %; c) a buffer at 05-0.60 weight %; and d) water. The photosensitive layer has a controlled release of 5-500 g/cm using ASTM D-3330 Method D, between its front imaging surface and the mask element.
Abstract:
Method for producing flexographic printing plates, using as starting material a photopolymerizable flexographic printing plate which at least comprises, arranged one above another, a dimensionally stable support, at least one photopolymerizable, relief-forming layer, at least comprising an elastomeric binder, an ethylenically unsaturated compound and a photoinitiator, a digitally imagable layer, comprising at least the following steps: (a) producing a mask by imaging the digitally imagable layer, (b) exposing the flexographic printing plate through the mask with actinic light, and photopolymerizing the image regions of the layer, the exposing taking place with a plurality of UV-LEDs which are arranged on at least one UV-LED strip which is moved relative to the surface of the flexographic printing plate, and (c) developing the photopolymerized layer by washing out and drying or by thermal development, characterized in that in the UV-LED strip or in a separate strip, at least one ultrasonic sensor is arranged, at least the thickness of the flexographic printing plate for exposure is determined with the at least one ultrasonic sensor, depending on the measured thickness of the flexographic printing plate, the exposing of the flexographic printing plate is controlled in respect of at least one of the following parameters: (i) number of exposure steps, (ii) exposure intensity, (iii) energy input per exposure step, (iv) duration of the individual exposure steps, (v) overall duration of exposure.
Abstract:
A device for automated implementation of preliminary reverse exposure, main exposure, and development of digitally imagable flexographic printing elements, and a method for producing flexographic printing plates starting from digitally imaged flexographic printing elements, using said apparatus.
Abstract:
A method of making a relief image printing element from a photosensitive printing blank is provided. A photosensitive printing blank with a laser ablatable layer disposed on at least one photocurable layer is ablated with a laser to create an in situ mask. The printing blank is then exposed to at least one source of actinic radiation through the in situ mask to selectively cross link and cure portions of the photocurable layer. Diffusion of air into the at least one photocurable layer is limited during the exposing step and preferably at least one of the type, power and incident angle of illumination of the at least one source of actinic radiation is altered during the exposure step. The resulting relief image comprises a plurality of dots and a dot shape of the plurality of dots that provide optimal print performance on various substrates, including corrugated board.
Abstract:
A resist underlayer film composition for use in a multilayer resist method, containing one or more compounds shown by formula (1), and an organic solvent, WX)n (1) W represents an n-valent organic group having 2 to 50 carbon atoms. X represents a monovalent organic group shown by formula (1X). “n” represents an integer of 1 to 10, The dotted line represents a bonding arm. R01 represents an acryloyl or methacryloyl group. Y represents a single bond or a carbonyl group. Z represents a monovalent organic group having 1 to 30 carbon atoms. A resist underlayer film composition can be cured by high energy beam irradiation and form a resist underlayer film having excellent filling and planarizing properties and appropriate etching resistance and optical characteristics in a fine patterning process by a multilayer resist method in the semiconductor apparatus manufacturing process.
Abstract:
A system for exposing a heat and/or light sensitive printing plate precursor including a coating on a support includes a platesetter including a laser head for generating a laser beam to create an image, and the platesetter further includes an electrostatic generator capable of electrostatically charging the surface of the coating.
Abstract:
A photocurable relief image printing element is described. The photocurable relief image printing element comprises (a) a support layer; (b) one or more photocurable layers disposed on the support layer, wherein the one or more photocurable layers comprise: (i) a binder; (ii) one or more monomers; (iii) a photoinitiator; and (iv) an additive selected from the group consisting of phosphites, phosphines, thioether amine compounds, and combinations of one or more of the foregoing; (c) a laser ablatable masking layer disposed on the one or more photocurable layers, the laser ablatable masking layer comprising a radiation opaque material; and (d) optionally, a removable coversheet. The photocurable relief image printing element provides improved surface cure in digital relief image printing elements.
Abstract:
A thermally-sensitive, positive-working lithographic printing plate precursor can be used to prepare lithographic printing plates using high pH, silicate-free processing solutions. The precursor has a grained an anodized aluminum-containing substrate including a poly(vinyl phosphonic acid) interlayer. A first ink receptive layer, and optionally a second ink receptive layer, is disposed directly on the poly(vinyl phosphonic acid) interlayer. This first ink receptive layer comprises an aromatic acid dye that comprises at least two aromatic groups in an amount of least 0.5 weight %. In addition, the precursor comprises an infrared radiation absorber in one of the layers.
Abstract:
An imageable material can be used to form a mask image for providing a relief image. This imageable material has a simplified structure and consists essentially of, in order: a transparent polymeric carrier sheet and a barrier layer comprising a first infrared radiation absorbing compound. A first ultraviolet radiation absorbing compound is provided in the transparent polymeric carrier sheet or the barrier layer. A non-silver halide thermally sensitive imageable layer is disposed on the barrier layer and comprises a second infrared radiation absorbing compound and a second ultraviolet radiation absorbing compound. A relief image is formed by imaging the imageable material to form an imaged mask material, exposing a relief-forming material with curing radiation through the imaged mask material to form exposed regions and non-exposed regions, and developing the imaged relief-forming material to form a relief image by removing its non-exposed regions.
Abstract:
Techniques or processes for providing markings on products are disclosed. The markings provided on products can be textual and/or graphic. The techniques or processes can provide high resolution markings on surfaces that are flat or curved. In one embodiment, the products have housings and the markings are to be provided on the housings. For example, the housing for a particular product can include an outer housing surface and the markings can be provided on the outer housing surface.