Abstract:
An adaptive photo thermal lens comprising at least one cell, each cell provided with at least one photo absorbing particle, a thermo-optical material in thermal contact with the cells and at least one controllable light source for illuminating the photo absorbing particles, the light source having at least one spectral component which can be absorbed by the photo-absorbing particles and being controllable in wavelength and/or power and/or polarization.
Abstract:
An optical-path-switching apparatus according to the present invention includes a reducing optical system capable of guiding signal light and control light along the direction of gravity into a thermal-lens-forming optical element having an incidence plane positioned to be perpendicular to the direction of gravity in such a way as to differentiate respective convergence points in a direction perpendicular to the optical axis. The apparatus further includes a light-receiving unit configured to converge or condense straight-traveling signal light in the absence of irradiation with the control light and signal light whose optical path has been switched due to irradiation with the control light using the same optical element. Further, the apparatus includes a wedge-type prism provided at a passing position of the optical-path-switched signal light to increase the distance between the optical axis of the optical-path-changed signal light and the optical axis of the straight-traveling signal light.
Abstract:
Described herein are compositions that are photorefractive upon irradiation by multiple laser wavelengths across the visible light spectrum. Embodiments of the photorefractive composition comprise a polymer, a chromophore, and a sensitizer, wherein the polymer comprises a repeating unit including at least a moiety selected from the group consisting of the formulae (Ia), (Ib) and (Ic), as defined herein. The photorefractive composition can be used in optical devices.
Abstract:
A thermal lens forming element includes a first chamber serving as a control light absorbing region, which is configured as a columnar body or an N prismatic body (wherein N is an integer equal to or greater than 4) circumscribing the columnar body and filled with a control light absorbing dyestuff solution containing a solvent having a viscosity of 0 to 3 mPa·s at 160° C. or above and a ratio of the viscosity of the solvent at 160° C. to a viscosity of the solvent at 40° C. not less than 1 and not greater than 6, wherein the columnar body or the N prismatic body circumscribing the columnar body has a central axis coinciding with an optical axis of incident signal light. The first chamber is connected to a second chamber via a solution channel and a dam. The dyestuff solution and a bubble of an inert gas are confined in the second chamber.
Abstract:
An optical deflection apparatus includes a signal light source configured to emit signal light having one or more wavelengths, a control light source configured to emit control light having a wavelength different from the wavelength of the signal light, a thermal lens forming optical element including a light absorption layer configured to transmit the signal light and selectively absorb the control light, and a beam-condensing unit configured to cause beam-condensation of the control light and the signal light at different convergence points in the light absorption layer. The thermal lens forming optical element causes convergence and divergence of the control light and the signal light on an incidence plane of the light absorption layer or its vicinity in a light traveling direction, wherein a thermal lens is reversibly formed in the light absorption layer due to a temperature increase occurring in a region where the control light is absorbed and its peripheral region, and the thermal lens changes a refractive index to change a traveling direction of the signal light.
Abstract:
Data 12010, 12020, etc. to be sent to each of client devices 1201, 1203, etc. from a data server device 1000 are, in a data communication unit 1100, first divided into electric signal packets by a data transmission/receipt control unit 1140, whereby an electric signal sequence tag is added to each electric signal packet, then converted into optical packets 12011, 12021, etc. by an optical signal transmitting unit 1120, and transmitted through an optical signal path 1110. At optical switch 1101, the optical paths of the packets are switched to optical signal paths 1111, 1112, etc. by the actions of optical destination tags 12111, 12121, etc. that are respectively synchronized with optical packets and irradiated by an optical signal transmitting unit 1120. At optical signal receiving units 1131, 1132, etc., the received optical packets are converted to electric signal packets, and reassembled to be original data 12010, 12020, etc. according to the identification information on the reassembly sequence recorded in the sequence tag in an electric signal packet by data transmission/receipt control units 1141, 1142, etc., and distributed to client devices 1201, 1202, etc. as electric signals.
Abstract:
A luminescent material, such as phosphor, is radiated by energy propagated from the side of an optical fiber, causing the luminescent material to emit visible light. The luminescent material can be of: a coincidentally-excited type, requiring the absorption of two wavelengths of radiation to emit visible light; memory-type, requiring absorption of one wavelength of charging radiation and absorption of another wavelength of controlling radiation to emit visible light; and quenchable type, requiring absorption of one wavelength of radiation to emit visible light and absorption of another wavelength of radiation to stop, i.e. quench, the emission of visible light. Two side-emitting optical fibers can be used, with each optical fiber providing one of the needed radiation wavelengths. One embodiment of the invention involves a matrix of optical fibers forming an optical display panel made using coincidentally-excited phosphors. Side-emitting optical fibers are used to simultaneously stimulate a phosphor pixel located between the two fibers, allowing matrix addressing of each pixel individually. The optical display panel is constructed of only optical components.
Abstract:
A luminescent material, such as phosphor, is radiated by energy propagated from the side of an optical fiber, causing the luminescent material to emit visible light. The luminescent material can be of: a coincidentally-excited type, requiring the absorption of two wavelengths of radiation to emit visible light; memory-type, requiring absorption of one wavelength of charging radiation and absorption of another wavelength of controlling radiation to emit visible light; and quenchable type, requiring absorption of one wavelength of radiation to emit visible light and absorption of another wavelength of radiation to stop, i.e. quench, the emission of visible light. Two side-emitting optical fibers can be used, with each optical fiber providing one of the needed radiation wavelengths. One embodiment of the invention involves a matrix of optical fibers forming an optical display panel made using coincidentally-excited phosphors. Side-emitting optical fibers are used to simultaneously stimulate a phosphor pixel located between the two fibers, allowing matrix addressing of each pixel individually. The optical display panel is constructed of only optical components.
Abstract:
An apparatus comprising a tunable liquid microlens that includes a transparent supporting layer and a transparent photoresponsive layer disposed on a first surface of the supporting layer. A droplet of a transparent liquid is disposed on the photoresponsive layer. The photoresponsive layer separates the supporting layer and the droplet. At least a portion of the photoresponsive layer that contacts the droplet may be selectively irradiated by at least one light source such that a contact angle between the droplet and the photoresponsive layer may be varied and the droplet may be repositioned along the photoresponsive layer. In this manner, at least one of a focal length and a lateral position of a focal spot of the microlens may be adjusted directly by irradiation with a light beam.
Abstract:
A luminescent material, such as phosphor, is radiated by energy propagated from the side of an optical fiber, causing the luminescent material to emit visible light The luminescent material can be of a coincidentally-excited type, requiring the absorption of two wavelengths of radiation to emit visible light. In such a case, two side-emitting optical fibers can be used, with each optical fiber providing one of the needed radiation wavelengths. One embodiment of the invention involves a matrix of optical fibers forming an optical display panel made using coincidentally-excited phosphors. Side-emitting optical fibers are used to simultaneously stimulate a phosphor pixel located between the two fibers, allowing matrix addressing of each pixel individually. The optical display panel is constructed of only optical components. Another embodiment involves an optical switch with coincidentally-excited luminescent material. One radiation is provided by a side-emitting optical fiber. To activate the switch, a second radiation is provided by a laser diode.