摘要:
An end closure for a cable having a core, at least two electrical cable wires and at least one optical transmission element, the core is surrounded by a metal wire reinforcement. On the end of the electrical cable wires an electrically suitable connection set is mounted, which at least partially protrudes out of a pipe. A connection unit is mounted on the end of the optical transmission element, which also partially protrudes from the pipe. The connection unit has a pot shaped tension element mounted tension proof on the free end of the pipe and surrounds, moisture tight and pressure tight, the part of the connection set and the connection unit that protrudes out of the pipe.
摘要:
A power cable assembly device adapted to be arranged in the spaces between neighbouring power cores of a power cable. The power cable assembly device includes an extruded profiled body made of a polymer material having a first, second, and third walls. The first wall being convex and having an exterior surface adapted to face a jacket of the power cable. The profiled body also having a chamber wall extending from the second to the third wall, defining a slit and adapted to receive a fibre optic cable.
摘要:
The disclosed power cable enables optical fibers to be installed after the power cable has been installed, thereby forming a hybrid cable. Segments of the power cable are manufactured with fiber installation tubes containing pulling members. When the power cable segments are coupled together, the fiber installation tubes and pulling members also are coupled together to form a fiber installation conduit and an extended pulling member. A fiber pull arrangement can be coupled to the extended pulling member and drawn through the fiber installation conduit within the power cable at any time subsequent to installation of the power cable.
摘要:
The present invention relates to an optical fiber composite cable. The optical fiber composite cable includes at least one power line to transmit power and an optical cable to monitor a state of the power lines, and the optical cable comprises optical fibers, tubes to accommodate the optical fibers, and a protection member to surround the tubes.
摘要:
The disclosed power cable enables optical fibers to be installed after the power cable has been installed, thereby forming a hybrid cable. Segments of the power cable are manufactured with fiber installation tubes containing pulling members. When the power cable segments are coupled together, the fiber installation tubes and pulling members also are coupled together to form a fiber installation conduit and an extended pulling member. A fiber pull arrangement can be coupled to the extended pulling member and drawn through the fiber installation conduit within the power cable at any time subsequent to installation of the power cable.
摘要:
Discussed herein are multi-member cables which are comprised of two or more components (including component cables and non-cable components) held together by at least one adhesive element placed between the components, and methods for manufacturing such cables. Multi-member cables which are compromised of jacketed cables whose jackets are adhered together without the use of an adhesive element, such as by co-forming the jackets, and methods for manufacturing such cables are also discussed. Generally, the components will be separated from the multi-member cable by an installer, although other methods may also be used.
摘要:
Discussed herein are multi-member cables which are comprised of two or more components (including component cables and non-cable components) held together by at least one adhesive element placed between the components, and methods for manufacturing such cables. Multi-member cables which are compromised of jacketed cables whose jackets are adhered together without the use of an adhesive element, such as by co-forming the jackets, and methods for manufacturing such cables are also discussed. Generally, the components will be separated from the multi-member cable by an installer, although other methods may also be used.
摘要:
The present invention is concerned with an optical cable with improved tracking resistance comprising at least one optical fibre and an outer sheath which comprises a polymeric material, characterized in that the polymeric material forms a matrix for the sheath and consists of a multimodal olefin polymer obtained by a coordination catalyzed polymerization, and in that the total composition of the sheath comprises 15-40% by weight of a metal hydroxide, preferably magnesium hydroxide and/or aluminium hydroxide, and 0.01-0.9% by weight of carbon black.
摘要:
Cladding structure, in particular for optical cables (1), for use in high-voltage environments, comprising at least one elongated plastic outer sheath (8), having capacitive elements (C.sub.1, C.sub.2, C.sub.3 . . . C.sub.n) electrically connected in series in the longitudinal direction of the cladding structure. Said capacitive elements are formed by electrodes (5, 7, 9; 10, 11, 12) underneath the outwardly facing side of the outer sheath (8). Said electrodes (5, 7, 9; 10, 11, 12) can be situated in a mutually offset manner in radial and/or longitudinal direction of the cladding structure. Damaging of the cladding structure due to corona discharge or tracking phenomena is effectively reduced by said series connection of capacitive elements (C.sub.1, C.sub.2, C.sub.3 . . . C.sub.n).
摘要:
An excellent optical fiber built-in type composite insulator including at least two insulator bodies each having a penetration bore, at least one optical fiber inserted in the penetration bores, and sealing structures for the penetration bores of the insulator bodies and for a joining layer of opposing end surfaces of adjacent insulator bodies, is provided, which effectively prevents leakage of inner silicone grease, bending and breakage of the optical fiber, leakage of electric current along the penetration bores, short circuited trouble, and destruction of the insulator bodies, improves joining strength of the opposing end surfaces of the insulator bodies, and maintains the joining strength for a long period, affords a change of numbers of the insulator bodies, and facilitates the production. A method of producing such composite insulator is also provided.