Abstract:
A device and methods for performing a photothermal measurement and relaxation compensation of a sample are disclosed. The device may include a probe beam source, a pump beam source, a sample, and a detector array. A method may include adjusting an intensity modulated pump beam power, adjusting a probe beam power to increase a response measurement location temperature and increase a modulated optical reflectance signal, directing the intensity modulated pump beam and the probe beam along a measurement path to a response measurement location on a sample for periodically exciting a region on the sample, detecting a reflected portion of the probe beam, and calculating an implantation dose.
Abstract:
The invention relates to a method for optically monitoring the progression of a physical and/or chemical process taking place on a surface of a body in which the surface radiation which emanates from part of the surface during the physical and/or chemical process, is measured with the aid of a measuring device, in particular a sensor. In order to develop a method of this kind such that sintering processes can also be monitored in a firing furnace having thermal radiation equilibrium, the invention proposes to emit the radiation (14) having a radiation spectrum that differs from the surface radiation, to the surface (10) by means of a radiation source (15) and to measure the radiation with the aid of a measuring device (16).
Abstract:
A method of analyzing a remotely-located object includes the step of illuminating at least a portion of a targeted object with electromagnetic radiation to induce a phase transformation in the targeted object, wherein the phase transformation produces an emitter plasma, which emits terahertz radiation. The method also includes the step of ionizing a volume of an ambient gas to produce a sensor plasma by focusing an optical probe beam in the volume and the step of detecting an optical component of resultant radiation produced from an interaction of the focused optical probe beam and the terahertz radiation in the sensor plasma. Detecting an optical component of the resultant radiation emitted by the sensor plasma facilitates detection of a characteristic fingerprint of the targeted object imposed onto the terahertz radiation produced as a result of the induced phase transformation.
Abstract:
The invention provides a method for the determination of the phase change characteristics of a hazardous material, the method comprising optically recording images of a sample of the material and objectively evaluating the images. The phase change characteristics generally relate to a solid/liquid or liquid/solid phase change, and the method finds particular application in the determination of the crystallisation points of hazardous materials, most particularly radioactive materials. The images are typically recorded by means of a camera, and evaluated using a computer, which is able to objectively determine the point at which a phase change is first seen to occur, and thereby provide accurate, reliable and objective data.
Abstract:
An optical analyzer (10) wherein a sample (19) of particulate matter, and particularly of organic matter, which has been collected on a quartz fiber filter (20) is placed in a combustion tube (11), and light from a light source (14) is passed through the sample (19). The temperature of the sample (19) is raised at a controlled rate and in a controlled atmosphere. The magnitude of the transmission of light through the sample (19) is detected (18) as the temperature is raised. A data processor (23), differentiator (28) and a two pen recorder (24) provide a chart of the optical transmission versus temperature and the rate of change of optical transmission versus temperature signatures (T and D) of the sample (19). These signatures provide information as to physical and chemical processes and a variety of quantitative and qualitative information about the sample (19). Additional information is obtained by repeating the run in different atmospheres and/or different rates of heating with other samples of the same particulate material collected on other filters.
Abstract:
A method and apparatus for indirectly measuring the percentage of dissolved gas in a process liquid by injecting bubbles of the same kind of gas of predetermined diameter into the liquid to be measured and then measuring gas bubble life or survival time. Bubble lifetime is directly related to dissolved gas percentage. A relatively long gas bubble lifetime would be indicative of a highly saturated or poorly degassed process liquid, whereas a relatively short bubble lifetime would be indicative of a low degree of saturation or a well degassed process liquid. In one embodiment, dissolved gas percentage is determined by placing a small quantity of the process liquid into a container, injecting a burst of gas bubbles, of predetermined size, into this quantity of liquid, and then measuring gas bubble lifetime. In another embodiment, a portion of the liquid being measured is continuously routed through a tube at a known constant flow rate. A continuous series of individual bubbles are then injected into the transparent tube, at a fairly constant rate, at or near the bottom thereof. The maximum distance attained by a bubble within the transparent tube before disappearing from view is a direct indication of the percentage of dissolved gas in the liquid being measured.
Abstract:
A laser vibrometer for measurement of ambient chemical species includes a laser that produces a beam that is split into a reference readout beam and a signal readout beam. A probe laser beam is tuned to an absorption feature of a molecular transition, and generates acoustic signals when incident on a gaseous species via the photo acoustic effect. The scattered acoustic signals are incident on a thin membrane that vibrates. The readout laser beam reflected from the vibrating membrane is mixed with the reference beam at the surface of a photo-EMF detector. Interferrometric fringes are generated at the surface of the photo-EMF detector. Electric current is generated in the photo-EMF detector when the fringes are in motion due to undulations in the signal readout beam imparted by the vibrating membrane. A highly sensitive photo-EMF detector is capable of detecting picoJoules or less laser energy generated by vibrating processes.
Abstract:
A particle analyzing apparatus including a particle measuring section that measures a number or concentration of particles in a sample gas; a component analyzing section that measures an amount of each component of the particles in the sample gas; a flow path that branches into a first flow path that introduces the sample gas to the particle measuring section and a second flow path that introduces the sample gas to the component analyzing section; a first adjusting section that is provided in the first flow path and dilutes the sample gas with a dilution gas and introduces the diluted sample gas to the particle measuring section to adjust a measurement range of the particle measuring section; and a second adjusting section that is provided in the second flow path and adjusts an introduction time during which the sample gas is introduced to the component analyzing section.
Abstract:
The invention relates to a method for producing a fibre-reinforced thermoplastic component assembly and to a fibre-reinforced thermoplastic component assembly, comprising: a fibre-reinforced thermoplastic component, which has a first side and a second side, opposite from the first side, at least one additional element of a thermoplastic material, which is arranged on the first side of the fibre-reinforced thermoplastic component, and at least one testing element of a thermoplastic material, which is visibly arranged on the first or second side of the fibre-reinforced thermoplastic component and is designed for testing the connection of the additional element to the fibre-reinforced thermoplastic component.
Abstract:
A method of analyzing a remotely-located object includes the step of illuminating at least a portion of a targeted object with electromagnetic radiation to induce a phase transformation in the targeted object, wherein the phase transformation produces an emitter plasma, which emits terahertz radiation. The method also includes the step of ionizing a volume of an ambient gas to produce a sensor plasma by focusing an optical probe beam in the volume and the step of detecting an optical component of resultant radiation produced from an interaction of the focused optical probe beam and the terahertz radiation in the sensor plasma. Detecting an optical component of the resultant radiation emitted by the sensor plasma facilitates detection of a characteristic fingerprint of the targeted object imposed onto the terahertz radiation produced as a result of the induced phase transformation.