Abstract:
The present invention is a passive receive module for use with an OTDR for determining polarity of a cable under test. Only one position of the module connector of the receive module includes a filling and all other positions are occupied with a reflective component with a reflective characteristic distinct from that of the filling. Only one position at the OTDR end of the cable will receive a distinct reflection from all of the other positions. Polarity may be determined from these positions.
Abstract:
There is therefore provided a method, system and computer program for detecting duplicate optical-fiber connector endface inspections performed on a same optical-fiber connector. Duplicate optical-fiber connector endface inspections can be detected by extracting a signature of the optical-fiber connector endface from the acquired optical-fiber connector endface inspection image to uniquely identify the optical-fiber connector and detect duplicate optical-fiber connector endface inspections. The signature can be stored to help detection of inadvertent or fraudulent duplicate or repetitive measurements made on a same optical-fiber connector.
Abstract:
In some examples, parallel optics based optical time domain reflectometer acquisition may include a laser array operatively collimated to an optical fiber array to transmit, in parallel, a plurality of laser beams to optical fibers of the optical fiber array. A photodiode array may receive, in parallel, backscattered and reflected light from the optical fiber array. The photodiode array may determine, based on the backscattered and reflected light, properties of the optical fibers of the optical fiber array.
Abstract:
An apparatus includes a light source that causes continuous oscillation light to enter one terminal of an optical transmission line, wherein the continuous oscillation light is to propagate a light variation of a first physical amount generated on the optical transmission line to another terminal of the optical transmission line; a photodetector that detects, on the one terminal, light turned back from a light modulation converter provided on the another terminal, wherein the light modulation converter obtains the turned-back light by converting the light variation of the first physical amount into a light variation of a second physical amount; and a processor that calculates a light-variation location generated on the optical transmission line by comparing time variations in the light variation of the first physical amount and the light variation of the second physical amount in the light detected by the photodetector.
Abstract:
A design of optical testing device or system for fiber arrays is disclosed. According to one aspect of the invention, an array of light sources and an array of detectors are disclosed. One of the light sources is controlled to be turned on to test a designated fiber in an array of fibers being tested for connection issues. A microcontroller is configured to determine which one of the detectors is detecting a light beam from one of the light sources, and mark a channel of the array of fibers accordingly depending on if the one of the detectors is supposed to detect the light beam; if another one of the detectors detects the light beam; or if none of the detectors detects the light beam.
Abstract:
A multimode launch system to be connected to an Optical Time-Domain Reflectometer (OTDR) for use in performing at least one OTDR measurement on a multi-fiber array Device Under Test (DUT), the multimode launch system comprising: an optical switch being connectable to the OTDR during use; a launch array device having an end being connectable to the optical switch and another end being connectable to the multi-fiber array DUT during use, the launch array device having a plurality of multimode launch optical fibers each having at least one first guidance parameter being smaller than a corresponding one of at least one second guidance parameter of at least one multimode optical fiber of the optical switch; and a multi-fiber mode conditioner along the launch array device for inducing a preferential attenuation of higher-order optical modes of test light propagated into the multi-fiber array DUT during use.
Abstract:
An optical module includes an optical amplifier configured to amplify Wavelength Division Multiplexing (WDM) channels transmitted on a fiber; and an optical time domain reflectometer (OTDR) configured to transmit an OTDR signal on the fiber and detect a back-scattered signal based thereon to test the fiber, wherein a wavelength of the OTDR signal is one of i) between one or more wavelengths associated with the optical amplifier and one or more wavelengths associated with the WDM channels and ii) greater than the one or more wavelengths associated with the WDM channels, for in-service operation of the OTDR.
Abstract:
There is provided a system and a test instrument for identifying or verifying the fiber arrangement and/or the cable type of multi-fiber array cables (such as MPO cables) which employs a light source and a polarity detector at the near end of the multi-fiber array cable under test, and a loopback device at the far end. The polarity detector comprises light presence detectors used to detect which one of the optical fibers of the multi-fiber array cable returns light looped back at the far end and thereby determine the fiber arrangement and/or the cable type of the multi-fiber array cable.
Abstract:
An OTDR device and method for characterizing one or more events in an optical fiber link are provided. A plurality of light acquisitions is performed. For each light acquisition, test light pulses are propagated in the optical fiber link and the corresponding return light signals from the optical fiber link are detected. The light acquisitions are performed under different acquisition conditions, for example using different pulsewidths or wavelengths. Parameters characterizing the event are derived using the detected return signal from at least two of the plurality of light acquisitions.
Abstract:
A system for supervision of a passive optical network includes an OTDR device, generating N+1 OTDR signals of wavelengths λU-λN, and transmitting the signals towards ONUs. The system includes a splitter having N output branches. An input of the splitter is connected to the output of the OTDR device and the output branches of the splitter are indirectly connected to the ONUs. The splitter splits the OTDR signals and forwards them towards the ONUs. The system includes a wavelength isolator having inputs connected to the splitter output branches. The wavelength isolator isolates, on individual inputs, one predetermined wavelength of the received OTDR signals per individual input, where two inputs of the wavelength isolator do not isolate the same wavelength, and forwards, from each of the inputs of the wavelength isolator, the OTDR signals to associated outputs towards the ONUs connected to the wavelength isolator by individual fiber links.