Abstract:
Exemplary inventive practice provides for evaluation of a substantially cylindrical object in terms of its conformity to dimensional tolerance standards designated for that object, such as involving runout tolerancing or profile tolerancing. Distances to the curved axial-longitudinal surface of the object are measured by sensors (e.g., linear variable differential transformers) at various axial-rotational orientations of the object. A computer converts the sensory measurements (e.g., represented as voltage signals) to linear measurements (e.g., defined in inches or centimeters), compares the linear measurements to pertinent dimensional tolerance standards stored in memory, and renders a “pass-or-fail” decision regarding acceptability of the object. Failure of the object is implied by nonconformity in any respect of its linear measurements to its dimensional tolerance standards.
Abstract:
A device for measuring and correcting a parallelism error of an upper plug end of a nuclear fuel rod comprising mechanisms for measuring a parallelism error and for correcting said error, and a mechanism for positioning said device on the fuel rod and cooperating with a rack on which the fuel rod is stored, said correction means being arranged opposite the measuring mechanism relative to the location of the fuel rod, in order to allow a measurement of the parallelism error during correction of said error.
Abstract:
Disclosed is an automated item tracking method, comprising the steps of reading an RFID signal, obtaining a reported position of an RFID signal generator, measuring the strength of the read RFID signal, creating a read profile, obtaining a physical package profile, comparing the read profile to the physical package profile, and generating a weighted read profile to estimate an actual position of the RFID signal generator by comparing the weighted read profile with the physical package profile.
Abstract:
An apparatus is provided for measuring deformation of a surface of a pipe. The apparatus has a central portion to which a detector section is mounted. At each side, guides are connected to the housing via arms. The housing has a platform below which an inverted U-shaped section is provided, with the platform forming the base of the U. At the rear of this section a wheel is rotatably mounted on an axle. Forward of this, and also within the U-shaped section is mounted a further U-shaped section. This is pivotally mounted at its rear end by means of a pin such that its forward end is free to move vertically. The forward end has mounted within it a further wheel on an axle. Projecting upwards from the second U-shaped section is a rod which passes through a hole in platform. Around the lower portion of the rod is provided a spring which biases the detector downwards and away from the platform. The rod moves vertically with the wheel as it passes over bumps in the pipe. The rod is connected to a potentiometer which varies an output voltage. By correlating the variations in the output voltage with the distance moved by the detector, deformations in the pipe may be mapped.
Abstract:
A method and apparatus for inserting and moving a sensing assembly with a mechanical positioning assembly to a desired remote location of a surface of a specimen under test and measuring angle and/or deflection by sensing the change in the impedance of at least one sensor coil located in a base plate which has a rotatable conductive plate pivotally mounted thereon so as to uncover the sensor coil(s) whose impedance changes as a function of deflection away from the center line of the base plate in response to the movement of the rotator plate when contacting the surface of the specimen under test. The apparatus includes the combination of a system controller, a sensing assembly, an eddy current impedance measuring apparatus, and a mechanical positioning assembly driven by the impedance measuring apparatus to position the sensing assembly at a desired location of the specimen.
Abstract:
A method and apparatus is provided for electromagnetically testing an elongate object such as a wire rope for cross-sectional area variations. The elongate object is magnetized over adjacent sections in opposing directions along a longitudinal axis of the elongate object. Variations in axial magnetic flux, which have been observed to be coincident with variations in the cross-sectional area of an elongate object, are measured by a plurality of non-inductive transducers. The transducers are interconnected to produce a composite signal. The composite signal is compared to a reference signal.
Abstract:
A method and apparatus is provided for electromagnetically testing an elongate object such as a wire rope for cross-sectional area variations. The elongate object is magnetized over adjacent sections in opposing directions along a longitudinal axis of the elongate object. Variations in axial magnetic flux, which have been observed to be coincident with variations in the cross-sectional area of an elongate object, are measured by using saddle coils which are positioned adjacent the magnetized sections of the elongate object and which detect variations in radial flux. The saddle coils are positioned to have first half circumferential windings located where the magnetic flux density in the elongate object is at a maximum value and second half circumferential windings located where the magnetic flux density in the object is zero.
Abstract:
An electro-mechanical eddy current probe having a rotatable sensing head for sensing the wall thickness of and locating local defects in a tube or conduit through which it is passed. The rotatable head includes a radially movable, outward projecting sensing member which is spring-biased into engagement with the interior surface of the tube and which carries an eddy current coil electrically monitored by the probe. The cylindrical probe is centered within the tube by a pair of centering guides at either of its ends. The probe also carries a fixed eddy current coil on its non-rotating body portion for detecting and anticipating locations of particular interest within the tube where the longitudinal movement of the probe should be slowed, such as locations of exterior tube support plates where denting is more apt to occur.
Abstract:
An apparatus for measuring the geometry of the hollow mold compartment of continuous casting molds comprising a measuring head displaceable essentially in the direction of its lengthwise axis and having three impact or contact elements arranged at a first side of the measuring head. The impact elements form a triangle which is parallel to the lengthwise axis of the measuring head. A first measuring feeler is arranged at this first side so as to bear against the neighboring mold wall and is perpendicular to the plane of the triangle and at least one resilient impact element is arranged at a second side of the measuring head opposite the first side and produces a force-vector directed away from the triangle at a right angle. A second measuring feeler is arranged at the second side of the measuring head coaxial to the first measuring feeler and bears against the opposite wall of the hollow mold compartment. Indicator elements operatively connected with the measuring feelers indicate the position thereof.
Abstract:
A method and apparatus for locating improperly positioned or bent rolls among a set of rolls which define a confined path of travel for a workpiece, particularly useful for checking a straight or curved roll-rack of a continuous-casting machine. The apparatus may be propelled through the path defined by the rolls by any suitable mechanism. For example, as applied to a roll-rack, the apparatus may be attached to the upper end of a starter bar and propelled with the bar through the rack, or the apparatus may be suspended from a hoist and pulled through the rack. The apparatus includes a housing and means within the housing for measuring the gap between work-engaging faces of the rolls and/or, when used with a curved roll-rack, means for measuring the angular relation of adjacent bottom rolls. The latter measurement is used in determining whether the work-engaging faces lie on arcs of the intended radii. Bent rolls are located by observing different measurements when the apparatus is moved in opposite directions through the path of travel.