Abstract:
A projectile launch detector, including a body, a mast and a blade rigidly connected to the mast; the mast being capable of sliding between a retracted configuration and a deployed configuration, and capable of pivoting between a first and a second angular position. The detector may further includes a first elastic return element to return the mast to the deployed configuration relative to the body; and a first associated sensor; and a second elastic return element to return the mast to the first angular position relative to the body; and a second associated sensor.
Abstract:
An aircraft, missile, projectile, or underwater vehicle with an improved control system, an improved control system, or a method of maneuvering an aircraft, missile, projectile, or underwater vehicle uses control surfaces that are movable along a track. The control system on a track (or “tracked control surface”) advantageously enables the aircraft, missile, projectile, or underwater vehicle to have an unlimited number of configurations, each configuration being tailored to the specific stability or maneuverability requirements during a specific portion of the flight by adjusting the center of pressure of the aircraft, missile, projectile, or underwater vehicle relative to its center of gravity.
Abstract:
An hybrid unmanned underwater vehicle comprises a body housing a controller; a vector thruster for propelling the body; deployable wings allowing the unmanned underwater vehicle to traverse by gliding as the unmanned underwater vehicle ascends and descends; a center-of-mass shifter for shifting a center-of-mass of the vehicle to allow the unmanned underwater vehicle to pitch up and pitch down; and one of a multi-stage buoyancy control system within the body and configured to adjust an apparent displacement of the unmanned underwater vehicle and an expandable outer shell configured to adjust an apparent displacement and therefore a buoyancy of the unmanned underwater vehicle.
Abstract:
An integrated propulsion and guidance system for a vehicle includes an engine coupled to an impeller via a driveshaft to produce propulsive force. The impeller includes a hub and a plurality of blades, including at least one control blade pivotably mounted to the hub. A control system provides a control signal to a magnetic actuator to adjust the blade pitch of the control blades as the blades rotate about the hub. The magnetic actuator provides an electromagnetic field that interacts with a magnet coupled to the control blade to adjust the pitch of the control blade. The change in blade pitch produces a torque on the driveshaft that can be used to control the heading of the vehicle. By varying the magnitude and phase of the control signal provided to the impeller, the torque can be applied in a multitude of distinct reference planes, thereby allowing the orientation of the vehicle to be adjusted through action of the impeller. Moreover, because the control blades are actuated magnetically, mechanical linkages between the impeller and the blade control motor may be eliminated.
Abstract:
A control fin assembly for a water vehicle includes a multiplicity of finsonnected together and grouped in an array mounted on the vehicle. A portion of the array is of a shape-memory material responsive to heat to assume selected shapes different from the shape of the array portion otherwise. The array portion is electrically conductive and adapted to increase in temperature upon application of electrical current thereto to effect the assumption of the selected shapes.The invention further relates to a control fin for a water vehicle, at least a portion of the fin being of a shape-memory material responsive to heat to assume selected shapes different from the shape of the fin otherwise, the fin portion being electrically conductive and adapted to increase in temperature upon application of electrical current thereto to effect the assumption of the selected shapes.
Abstract:
There is presented in combination, a water vehicle and a directional cont device therefor. The water vehicle includes at least a portion thereof which is underwater during travel of the vehicle through water. The directional control device comprises a single arm extendible from one side of the underwater portion of the vehicle. The arm includes a multiplicity of fins in a compact array for contact with the water through which the vehicle portion moves, each of the fins having an uncambered, neutral lift cross-section matching the hydrodynamic streamline flow thereabout at predetermined vehicle speed below the cavitation threshold.