Abstract:
According to a first aspect of the present invention, there is provided a reconnaissance and communication assembly, adapted to be launched from a gun barrel into the air over a body of water. The assembly comprises a carrier (with a cavity) and a payload (within the cavity). The payload is arranged to be controllably expelled from the carrier and once expelled from the carrier, the payload is adapted to enter the water; and the payload transmits a signal after entering the water.
Abstract:
In an intelligent multi-rotor rescue thrower, a throwing projectile head is located at a foremost end of the thrower, a parachute storage bin is mounted at a center of a front end of the throwing projectile head, a rear end of the throwing projectile head is connected to a projectile body shell through threads, and a first splitter plate, a second splitter plate, and a third splitter plate are directly connected to the projectile body shell through slide grooves built in the projectile body shell to equally divide a space in a cavity of the projectile body shell; connecting flanges tightly connect the projectile body shell to motors, a rotor is connected to an upper end of each of the motors, and three rotors are provided in the space in the cavity of the projectile body shell.
Abstract:
A parachute device is provided for a divisible shell that includes an active body and a shell base. The parachute device includes two parachutes, a first, main parachute connected to the active body by parachute lines and a second parachute connected to the shell base.
Abstract:
Movement of a disrupter cannon is arrested by a parachute. The parachute is coupled (e.g., tethered) to the disrupter cannon. Prior to firing the cannon, the parachute is held in a retainer. Movement of the disrupter cannon in response to firing pulls the parachute from the retainer. The parachute deploys and arrests the movement of the disrupter cannon. The retainer protects the parachute prior to firing the disrupter cannon. The retainer may hold the parachute during transport.
Abstract:
A modular reconnaissance capsule or reconnaissance pod is provided that is suitable for deployment by means of an artillery launching platform, such as a conventional 40 mm grenade launcher or 155 mm cannon wherein a parachute is deployed at a pre-calculated observation altitude, the parachute being designed to yield a sufficiently slow rate of descent to permit live video capture and transmission of images as forward observation information. Alternatively, pods according to the invention may also be air dropped from an aircraft, either piloted or pilotless, thus allowing the aircraft to operate at a safe distance and yet provide close reconnaissance even under a cloud cover. Accurate information about targeting dynamics is made available to the user through commercially available products. The invention complements other reconnaissance methods and provides easy-to-use real-time visual information for a desired area of interest.
Abstract:
A modular reconnaissance capsule or reconnaissance pod is provided that is suitable for deployment by means of an artillery launching platform, such as a conventional 40 mm grenade launcher or 155 mm cannon wherein a parachute is deployed at a pre-calculated observation altitude, the parachute being designed to yield a sufficiently slow rate of descent to permit live video capture and transmission of images as forward observation information. Alternatively, pods according to the invention may also be air dropped from an aircraft, either piloted or pilotless, thus allowing the aircraft to operate at a safe distance and yet provide close reconnaissance even under a cloud cover. Accurate information about targeting dynamics is made available to the user through commercially available products. The invention complements other reconnaissance methods and provides easy-to-use real-time visual information for a desired area of interest.
Abstract:
The invention relates to the rocket and space engineering, and can find use in development of reusable rocket complexes for placing various space objects in orbit. A set of rocket boosters for operating launch vehicles comprises expendable and nonexpendable rocket boosters. A part of equipment of the expendable booster and a part of equipment of the nonexpendable boosters are replaceably mounted on said boosters and are capable to be interchangeable. A part of interchangeable equipment is made interconnected to another part of said equipment by at least a part of communications and structurally united into a module by a housing of a compartment of boosters. A method of operating launch vehicles comprises the steps of one-time using an expendable rocket booster within the launch vehicle, and reusing nonexpendable rocket boosters within the launch vehicles. There are the steps of periodical replacing a serviceable portion of the nonexpendable rocket booster (3, 4, 7) for a new one before repeated uses of the nonexpendable rocket booster, and mounting the replaced part onto the expendable rocket booster.
Abstract:
This invention relates to a gas generator having two or more compartments, each with a separate initiator, with one compartment discharging before another, i.e., the compartments discharge sequentially. Each compartment has the same propellants, but the propellants have different geometries in each compartment, which results in different rates of gas evolution from each compartment. The gas generator has a rapid initial inflation, followed by a more gradual inflation rate in the subsequent stages, improving safety to occupants. One propellant used for the gas generator comprises (1) ammonium nitrate as the oxidizer, (2) a fuel such as CL-20. and (3) a binder such as polycaprolactone. A second propellant comprises by weight approximately 70-95% energetic nitrate fuel, 5-25% energetic polymer binder and 0.1-5% flash suppressant. No hot metal particles (e.g., CuO) are generated in the new systems.
Abstract:
A non-lethal cargo projectile includes a projectile body; a nose cap attached to a front of the projectile body; a boattail attached to a rear of the projectile body; a fin assembly including a boom attached to the boattail; a parachute assembly disposed in a front of the projectile body; a cable connecting the parachute assembly to the boattail; a fuze disposed in the boattail; a first pair of half cylinders disposed in the projectile body behind the parachute assembly; a first circular disc disposed at a front end of the first pair of half cylinders and a second circular disc disposed at a rear end of the first pair of half cylinders; a second pair of half cylinders disposed in the projectile body in front of the first circular disc enclose the parachute assembly; and a payload disposed in a space defined by the first pair of half cylinders and the first and second circular discs.
Abstract:
An autonomous guided parachute system for cargo drops that divides the requirements of guidance and soft landing into separate parachutes. Said invention includes a high wing-loaded ram air parachute for guidance, a larger round parachute for soft landing, a harness/container system, flight computer, position sensors and actuation system. The system is dropped from an airplane. a predetermined period of drogue fall ensures a stable position prior to deploying the guidance parachute. The flight controller determines a heading to intersect with an area substantially above the desired target and controls the guidance parachute via pneumatic actuators connected to the parachutes steering lines to fly on that heading. At a minimum altitude prior to the systems impact with the ground the flight computer transitions the system from the fast high performance guidance parachute to a larger landing parachute by releasing the guidance parachute to static line extract and deploy the landing parachute. If the system reaches a position substantially above target area prior to the parachute transition altitude the flight computer controls the system into a spiral dive or other rapid altitude dropping maneuver until the transition altitude is reached. Once transitioned to the landing parachute the system descends for a brief period unguided under the landing parachute until touchdown.