Abstract:
An integrated method for the production of liquefied natural gas (LNG) and syngas is provided. The method can include the steps of: utilizing letdown energy of a high pressure natural gas stream that is withdrawn from a natural gas pipeline to provide a warm temperature cooling; utilizing a refrigeration cycle to provide a cold temperature cooling, wherein the refrigeration cycle comprises a refrigerant recycle compressor that is powered utilizing a steam turbine; and cooling a second high pressure natural gas stream using the warm temperature cooling and the cold temperature cooling to produce an LNG product stream. The second high pressure natural gas stream is withdrawn from the natural gas pipeline, and the steam turbine is powered by high pressure steam that is produced from a syngas production facility.
Abstract:
A liquefaction system that is configured to use a single methane expander to provide primary refrigeration duty. The liquefaction system can include a heat exchanger and a fluid circuit coupled with the heat exchanger, the fluid circuit configured to circulate a process stream derived from an incoming feedstock of natural gas. The fluid circuit can comprise a methane expander coupled with the heat exchanger, a sub-cooling unit coupled with the methane expander, the sub-cooling unit configured to form a liquid natural gas (LNG) product from the process stream, and a first throttling device interposed between the heat exchanger and the sub-cooling unit. The methane expander and the first throttling device can be configured to expand the process stream to a process pressure that is between a first pressure of the incoming feedstock and a second pressure of the process that exits the sub-cooling unit.
Abstract:
Variable N2 content in feed gas ranging from 3 mole % to 50 mole % can be rejected from the process using a feed exchanger that is fluidly coupled with a cold separator and a single fractionation column to produce a nitrogen vent stream and streams that are suitable to be further processed for NGL recovery and LNG production.
Abstract:
A process and an apparatus for liquefying a portion of a natural gas stream are disclosed. The natural gas stream is cooled under pressure and divided into a first stream and a second stream. The first stream is cooled, expanded to an intermediate pressure, and supplied to a lower feed point on a distillation column. The second stream is expanded to the intermediate pressure and divided into two portions. One portion is cooled and then supplied to a mid-column feed point on the distillation column; the other portion is used to cool the first stream. The bottom product from this distillation column preferentially contains the majority of any hydrocarbons heavier than methane that would otherwise reduce the purity of the liquefied natural gas, so that the overhead vapor from the distillation column contains essentially only methane and lighter components. This overhead vapor is cooled and condensed, and a portion of the condensed stream is supplied to a top feed point on the distillation column to serve as reflux. A second portion of the condensed stream is expanded to low pressure to form the liquefied natural gas stream.
Abstract:
This invention relates to a process and apparatus for liquefying natural gas. In another aspect, the invention concerns a liquefied natural gas (LNG) facility employing an ethylene independent heavies recovery system.
Abstract:
The invention relates to a natural gas liquefaction process and particularly to one suited to use offshore. The invention provides a natural gas liquefaction apparatus wherein a carbon dioxide based pre-cooling circuit is provided in a cascade arrangement with a main cooling circuit. The invention also extends to a natural gas liquefaction apparatus wherein a main cooling circuit uses as a refrigerant a gas stream, at least a portion of which is derived from a raw natural gas source.
Abstract:
Substantially all the nitrogen is removed from natural gas during the production of LNG, without producing mixed nitrogen/methane streams needing recycle and further processing, or requiring compression for burning as fuel, by operating both the high pressure and the low pressure multistage distillation towers of a two column cryogenic nitrogen rejection unit to produce acceptable liquefied natural gas as tower bottom products, while the low pressure tower is further operated to produce as an overhead a gas steam containing no more than about 1% methane for safe venting to the atmosphere.
Abstract:
The invention relates to a natural gas liquefaction process and particularly to one suited to use offshore. The invention provides a natural gas liquefaction apparatus wherein a carbon dioxide based pre-cooling circuit is provided in a cascade arrangement with a main cooling circuit. The invention also extends to a natural gas liquefaction apparatus wherein a main cooling circuit uses as a refrigerant a gas stream, at least a portion of which is derived from a raw natural gas source.
Abstract:
The present invention comprises a process for producing liquefied natural gas from the methane that is produced during natural gas liquids extraction. The process includes distilling the feed to extract methane, then cooling and expanding the methane to produce liquefied natural gas and cold methane vapor. The cold methane vapor is employed as a coolant to precool the feed and to cool the methane before expansion, and is then recompressed for reinjection into the well formation. The bottoms from the methane distillation may be further distilled to extract ethane, which may be cooled with the cold methane vapor and combined with the liquefied natural gas product. A portion of the recompressed methane may be diverted from the compressor train, cooled and expanded to produce additional liquefied natural gas and cold methane vapor.
Abstract:
Process and system for liquefying a pressurized gas, especially natural gas. The process is carried out in two heat exchangers, and cooling for each heat exchanger is provided by a mixed refrigerant which is vaporized at a single essentially constant pressure. Feed precooling, low level refrigerant precooling, and high level liquid refrigerant subcooling are effected in one of the heat exchanger against low level refrigerant vaporizing at a single essentially constant pressure. The process and system of the invention are especially well-suited for installation on ships, barges, and offshore platforms.