摘要:
At a refrigeration cycle device, an injection pipe and an economizer heat exchanger are provided at a main refrigerant circuit. In addition, the refrigeration cycle device includes a sub-refrigerant circuit having a sub-usage-side heat exchanger. At the refrigeration cycle device, the sub-usage-side heat exchanger functions as an evaporator of a sub-refrigerant and cools a main refrigerant that has been cooled at the economizer heat exchanger, or functions as a radiator of the sub-refrigerant and heats the main refrigerant that has been cooled at the economizer heat exchanger.
摘要:
To avoid decline in the efficiency of a compressor at a low load, a thermal storage air conditioner has a refrigerant circuit (11) which has a compressor (22), an outdoor heat exchanger (23), and an indoor heat exchanger (72) and performs a refrigeration cycle, and a thermal storage section (60) which has a thermal storage medium and exchanges heat between the thermal storage medium and a refrigerant of the refrigerant circuit (11). The thermal storage air conditioner performs a simple cooling operation in which in the refrigerant circuit (11), the refrigerant is condensed in the outdoor heat exchanger (23) and evaporates in the indoor heat exchanger (72), and a cooling and cold thermal energy storage operation in which in the refrigerant circuit (11), the refrigerant is condensed in the outdoor heat exchanger (23) and evaporates in the indoor heat exchanger (72), and in which the thermal storage medium in the thermal storage section (60) is cooled by the refrigerant. The thermal storage air conditioner has an operation control section (100) which, if a rotational speed of the compressor (22) is slowed down to a predetermined lower reference value in the simple cooling operation, switches an operation of the thermal storage air conditioner from the simple cooling operation to the cooling and cold thermal energy storage operation to increase the rotational speed of the compressor (22).
摘要:
An ionic air cooling device comprising a salinity differential heat engine using a heat pump as the primary heat source and the mechanism by which the temperature differential is achieved. A closed loop thermodynamic cycle which produces a high thermodynamic efficiency in heat to energy conversion with a low temperature differential between the high and low sides, in addition to a net ambient temperature cooling effect by directly or indirectly converting ambient temperature/environmental low grade heat to electricity or potential kinetic energy or mechanical work. An ionic air cooling device which uses a salinity differential heat engine in which the heat energy can be converted to kinetic or electrical energy by means of pressure retarded osmosis, pressurized gas through volume confinement, or reversed electro dialysis.
摘要:
Disclosed are embodiments of heat pump systems and methods for operating such systems in the heating mode while a heat pump operating parameter reaches or is equal to a predetermined operating value at which it is not advisable to use conventional heat pump systems for heating an enclosed structure. In addition to ancillary components, the heat pump systems includes indoor, outdoor and auxiliary heat exchangers, reversing and flow diverting valves, compressors, refrigerant superheat controllers, and auxiliary energy sources. During the heating mode of operation, while the heat pump operating parameter reaches or is equal to the predetermined operating value, the flow of liquid refrigerant through the outdoor heat exchangers is inhibited and is diverted to flow through the auxiliary heat exchangers. Thermal energy from the auxiliary energy source is used for evaporating the liquid refrigerant flowing through the auxiliary heat exchangers.
摘要:
A reversible system for recovery of heat energy by sampling and transfer of calories from one or more media into one or more other media of any type. The innovation is a new principle of refrigeration operation that makes it possible—with a nonreversible plate exchanger, a reversible plate exchanger, and a finned battery on an outside air circuit—to implement the following functions: total or partial restoration of calories on the nonreversible exchanger from the outside battery or from the reversible exchanger in evaporator mode, total or partial restoration of the calories on the reversible exchanger from the outside battery, refrigeration production on the reversible exchanger with total or partial evacuation of the calories on the nonreversible exchanger and/or on the outside battery.
摘要:
An auxiliary air conditioning system (7) for a motor vehicle (1), comprising a first heat exchanger (17) adapted to be installed inside a passenger compartment (4) of the motor vehicle and an external unit (43) comprising an auxiliary engine (8), an auxiliary compressor (12) driven by the auxiliary engine (8) and a second exchanger (17). The system comprises a switching valve (20) for selectively setting a first refrigerating cycle operating mode in which the first heat exchanger (17) serves as an evaporator and the second heat exchanger (14) serves as a condenser, and a second heat pump operating mode, in which the first heat exchanger (17) serves as a condenser and the fluid of the second heat exchanger (14) is cut off and the operative fluid is allowed to flow through a heating device (30) to receive thermal power independently from the outside environment temperature.
摘要:
A compartmentalized transport refrigeration system, and method of operating same, in which a host refrigeration unit controls the temperature of the air in a front compartment of a trailer, and a remote evaporator unit controls the temperature of the air in a rear compartment. In order to increase the heating and cooling capacity of the remote evaportor, the host unit is prevented from going into a heating mode in response to predetermined conditions, and more, or all in certain instances, of the discharge gas from the host compressor is made available for the remote evaporator.
摘要:
A heat pump system with three heat exchangers, two of which are connected through a reversible expander and the third of which is connected to both of the first mentioned exchangers through an expander and check valve arrangement for refrigerant to flow from the third to either of the first two heat exchangers but not vice versa. A flow control valve selectively connects the other side of either of the first two heat exchangers to the suction side of the compressor while selectively connecting the other side of any one of the heat exchangers to the high pressure side of the compressor to form a refrigeration loop including two of the heat exchangers. Refrigerant flow through the heat exchanger not being used is blocked.
摘要:
A heat pump system includes a compressor, a usage side heat exchanger, a heat source side heat exchanger, an expansion mechanism, a main refrigerant flow control valve switchable between cooling and heating modes, a gas reheat heat exchanger, a fan, and a secondary refrigerant flow control device switchable between first, second, and third modes. Refrigerant flows from the compressor discharge line to the main refrigerant flow control device in the first mode. Refrigerant flows from discharge line to gas reheat heat exchanger and then main refrigerant flow control valve in the second mode. Refrigerant flows both from discharge line to gas reheat heat exchanger and then main refrigerant flow control valve, and from discharge line to main refrigerant flow control valve without flowing through the gas reheat heat exchanger in the third mode. Refrigerant flows to the usage side and hot gas reheat heat exchanger in the heating mode.
摘要:
A heat-pump air-conditioning hot-water supply device includes a first refrigerant passage connecting a compressor and a decompressor, a second refrigerant passage branching from between the compressor and a first solenoid valve and connecting a second solenoid valve, a hot-water supply heat exchanger, and the decompressor, a pressure sensor configured to measure discharge pressure of the compressor, and a control device configured to adjust an operational frequency of the compressor and adjust an opening degree of a valve of the decompressor. The control device is configured to calculate a condensing temperature from the discharge pressure, and perform operation in one of an air conditioning prioritized mode in which a preset operational frequency of the compressor is changed, and an energy saving prioritized mode in which the opening degree of the valve of the decompressor is changed, when the condensing temperature is not lower than a set condensing temperature.