摘要:
The invention provides the sectional regenerative third-type absorption heat pump which belongs to low-temperature waste heat utilization and refrigeration technique filed. It mainly comprises four generators, four absorbers, a condenser, an evaporator, a throttle, four solution pumps and four solution heat exchangers. The refrigerant vapor of the first generator is provided for condenser. The refrigerant liquid of condenser is provided for evaporator. The refrigerant vapor of evaporator is provided for the first absorber. The second generator and the second absorber, the third generator and the third absorber respectively form the driving heat sectional regenerative process. The third generator and the third absorber form the waste heat regenerative process. The first absorber, the second absorber and the third absorber supply heat to the condenser. The fourth absorber releases the low temperature heat. The sectional regenerative third-type absorption heat pump is thereby formed.
摘要:
A simple heat cascading regenerative sorption heat pump process with rejected or waste heat from a higher temperature chemisorption circuit ("HTCC") powering a lower temperature physisorption circuit ("LTPC") which provides a 30% total improvement over simple regenerative physisorption compression heat pumps when ammonia is both the chemisorbate and physisorbate, and a total improvement of 50% or more for LTPC having two pressure stages. The HTCC contains ammonia and a chemisorbent therefor contained in a plurality of canisters, a condenser-evaporator-radiator system, and a heater, operatively connected together. The LTPC contains ammonia and a physisorbent therefor contained in a plurality of compressors, a condenser-evaporator-radiator system, operatively connected together. A closed heat transfer circuit ("CHTC") is provided which contains a flowing heat transfer liquid ("FHTL") in thermal communication with each canister and each compressor for cascading heat from the HTCC to the LTPC. Heat is regenerated within the LTPC by transferring heat from one compressor to another. In one embodiment the regeneration is performed by another CHTC containing another FHTL in thermal communication with each compressor. In another embodiment the HTCC powers a lower temperature ammonia water absorption circuit ("LTAWAC") which contains a generator-absorber system containing the absorbent, and a condenser-evaporator-radiator system, operatively connected together. The absorbent is water or an absorbent aqueous solution. A CHTC is provided which contains a FHTL in thermal communication with the generator for cascading heat from the HTCC to the LTAWAC. Heat is regenerated within the LTAWAC by transferring heat from the generator to the absorber. The chemical composition of the chemisorbent is different than the chemical composition of the physisorbent, and the absorbent. The chemical composition of the FHTL is different than the chemisorbent, the physisorbent, the absorbent, and ammonia.
摘要:
An absorption type heat pump system including a first heat pump of the absorption type and a second heat pump of the absorption type. The first heat pump includes a generator equipped with a heating source, a condenser, an evaporator, an absorber, and a solution heat exchanger for drawing off hot water from the condenser and the absorber for heating and hot water supply purposes. The second heat pump includes a generator equipped with a heating source, a condenser, an evaporator, an absorber and a solution heat exchanger. The condenser and the absorber of the second heat pump are mounted in the evaporator of the first heat pump and the first and second heat pumps are connected together, so as to absorb heat from atmosphere by the evaporator of the second heat pump and utilize as a heat source for vaporizing a refrigerant in the evaporator of the first heat pump the heat given off by the condenser and the absorber of the second heat pump.
摘要:
An absorption refrigeration and heat pump system in which a higher temperature subsystem and a lower temperature subsystem are combined with the desorber means of the higher temperature subsystem in heat exchange relationship with the condenser means of the lower temperature subsystem, and in which the evaporators of each subsystems are in heat exchange relationship with either the load in one mode of operation or the heat sink in another mode of operation, and the absorbers and condenser of the lower temperature subsystem are in heat exchange relationship with the heat sink in the first mode of operation and with the load in the other mode of operation. Means are provided to balance the system including a condensate pump between the higher temperature condenser and the higher temperature desorber. Alternate means are provided to improve lower temperature heat pumping by restricting the refrigerant flow through one of the expansion valves and diverting it to the solution pump.
摘要:
Sensible waste heat from industrial or other sources is boosted to useful temperature levels by combining at least one Rankine vapor generation cycle with at least one solution heat pump cycle. Waste heat is first utilized to boil off refrigerant in the Rankine cycle evaporator to provide a source of relatively high pressure vapor to an absorber in the solution heat pump. In the absorber, the vapor is contacted with a working solution of absorbent and refrigerant. As the refrigerant vapor is absorbed into solution, its latent heats of condensation and solution are given off at a temperature higher than the temperature of to a process (boosted output) stream the waste heat source. The working solution is then throttled to a relatively low pressure desorber where a portion of the refrigerant is desorbed as vapor from the solution by the further use of waste heat. The desorbed refrigerant vapor is then condensed and pumped to the evaporator for reuse. Working solution is recycled from the desorber to the absorber for reuse. Utilization of the sensible waste heat, first source is maximized by extracting successive portions of heat for use in the Rankine cycle evaporator section and then in a heat pump cycle desorber section. Multiple cycle systems are disclosed which boost the temperature of a portion of the waste heat to even higher levels than possible from the single cycle system.
摘要:
This invention relates to an airconditioning system which uses a plurality of absorption chiller-cells, for refrigerating an antifreeze fluid that is circulated through fan-coil units of an airconditioning system. The anti-freeze fluid passes through refrigerant evaporators in each cell structure in a consecutive order for lowering the temperature of the antifreeze fluid gradually. More particularly, it relates to an absorption chiller-cell system having a plurality of evaporators employing multi-refrigerant circulation circuits in an absorption cycle to produce sufficient refrigerant for the airconditioning system. The invention enables the physical size of the system to be relatively small, so that the system can replace conventional electric airconditioning units for home applications. In further aspects, this invention provides an airconditioning system which includes a plurality of absorption chiller-cells that produce various kinds of capacity of the system by combining more or less numbers of chiller-cells, the invention provides also an easier and simpler solution for maintenance or replacement of chiller-cells.
摘要:
The invention relates to an apparatus for the absorption cooling of a fluid, in particular air.Two separate mutually independent but interacting absorption cooling devices are provided, the cooling system of one of the two devices being used for cooling the absorbent liquid of the other device, this liquid, after dilution, by the fact of having absorbed steam, being boiled by heat provided by condensing steam resulting from boiling the diluted absorbent liquid of the initially considered absorption device by means of an external burner.The pressure in each component of the absorption device used for directly cooling the air is less than the pressure in the corresponding component of the other device, the absorbent liquid of which is cooled by external cooling fluid. The two devices are provided with heat exchangers cooled with air, such heat exchangers being serially arranged so that the same airflow passes therethrough.
摘要:
A hybrid air-conditioning system having an absorption refrigeration subsystem for sensible heat loads and a cooperating liquid desiccant dehumidification subsystem for latent heat loads incorporates additional apparatus for effecting the efficient transfer of available heat between the subsystems to improve the total system Coefficient of Performance (C.O.P.) over a wide range of latent heat load to sensible heat load proportions. Available heat recovery and system internal load generation are utilized in high and low latent load ratio regions, and modulated heat transfer using an additional series absorption refrigeration cycle loop is optionally utilized in the mid-latent heat load ratio region.
摘要:
A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit.