Abstract:
A clutch assembly includes first, second and third clutches, a housing including a first projection to which the first clutch selectively produces a connection, a second projection to which the second and third clutches selectively produce connections, clutch-apply circuits each circuit corresponding to one of the clutches, and a balance volume circuit for supplying fluid to each of the clutches, and a shaft rotatably supporting the housing.
Abstract:
A lockup device (63) includes a lockup clutch (64) for establishing connection between a rotating body (44) of a torque converter (41) and a transmission shaft (55), a lockup control valve (70) that controls supply/discharge of pressurized oil from a hydraulic pump (69) to/from the lockup clutch (64), and a lockup oil passage (75) that introduces pressurized oil from the lockup control valve (70) to the lockup clutch (64). The lockup control valve (70) is arranged on an outer side face (18B) of an intermediate casing (18) in a position of radially overlapping the transmission shaft (55) in a radial direction of the transmission shaft (55). Further, a casing side oil passage (76) constituting the lockup oil passage (75) is formed as a linear oil passage that linearly extends in the radial direction of the transmission shaft (55) between the lockup control valve (70) and the transmission shaft side oil passage (77).
Abstract:
Provided is a seal ring that has low-leakage characteristics and low-friction characteristics and can improve the drive loss of the automatic transmission of an automobile to thereby contribute to an improvement in the fuel consumption of the automobile. The seal ring is attached to a shaft groove formed on the outer peripheral surface of a shaft. A plurality of peripherally spaced recessed sections are formed on at least the inner peripheral side of a contact side-surface. Inner walls are provided on the inner peripheral side of the recessed sections, and oil introduction openings that open on an inner peripheral surface are provided on the inner peripheral side of the recessed sections. The inner walls may be provided on opposite peripheral sides of the recessed sections but may be provided only on the rear side in the rotation direction.
Abstract:
A clutch assembly includes first, second and third clutches, a housing including a first projection to which the first clutch selectively produces a connection, a second projection to which the second and third clutches selectively produce connections, clutch-apply circuits each circuit corresponding to one of the clutches, and a balance volume circuit for supplying fluid to each of the clutches, and a shaft rotatably supporting the housing.
Abstract:
An automatic transmission including a clutch that can engage rotation transmission of two rotary members by supplying an engagement pressure to an engagement hydraulic oil chamber disposed on an outer peripheral side of a central shaft to press and move a piston member to one axial side, and disengage the rotation transmission of the two rotary members with an other-side pressing mechanism that presses and drives the piston member to the other axial side.
Abstract:
A vehicle drive device, having a case with a support wall that extends at least radially, and an axially protruding portion that is cylindrically shaped integrally with the support wall and protrudes axially from the support wall toward a rotating electrical machine. A rotor support member is supported radially and axially so as to be rotatable with respect to the axially protruding portion via a support bearing provided on an outer or inner peripheral surface of the axially protruding portion. The element to be supplied with the oil pressure is positioned on a side axially opposite to the support wall. The vehicle drive device includes a supply oil passage, which is provided inside the support wall and the axially protruding portion, and has an end face opening that is formed in an end face located in a protruding direction of the axially protruding portion.
Abstract:
A starting device includes a housing; an output side member; a clutch mechanism; a working oil passage that supplies working oil to a hydraulic chamber of the clutch mechanism from an oil pressure source side; and a lubricating oil passage including a supply oil passage that supplies lubricating oil to the housing from the oil pressure source side and a return oil passage for returning the lubricating oil to the oil pressure source side from the housing, wherein the working oil passage and the lubricating oil passage are formed to overlap at least partially in an axial direction.
Abstract:
The present invention relates to a manifold for a vehicle transmission. The manifold defines a plurality of laterally extending channels suitable for simultaneously transferring oil at separate flow rates and pressure signals and may be subdivided to provide a plurality of like defined manifolds. The manifold, formed through an extrusion process, is fittable within or around a transmission shaft.
Abstract:
A hydraulic control system for actuating a torque transmitting device in a transmission includes a sump for receiving a hydraulic fluid and a piezoelectric pump for pumping the hydraulic fluid from the sump to the torque transmitting device. A first fluid flow path communicates the hydraulic fluid from the sump to the piezoelectric pump and a second fluid flow path communicates the hydraulic fluid from the piezoelectric pump to the torque transmitting device. An exhaust means selectively communicates the hydraulic fluid from the torque transmitting device to the sump.
Abstract:
A shaft system for an automatic transmission includes a stator support shaft having an internal axial bore for receiving an input shaft, a forward engagement portion for engaging a stator of a torque converter of the automatic transmission and an integral stator support flange extending radially outward for engaging a stator support of the automatic transmission and transferring to the stator support substantially all of a torque load imposed on the stator support shaft by the stator. The stator support flange includes at least one oil flow bore positioned therein to supply oil between different components of the transmission.