Abstract:
A fan assembly includes a fan duct, an inlet fan, and an outlet guide vane assembly. The inlet fan includes blades adapted to force fan exit air toward an aft end of the fan duct. The outlet guide vane assembly is located in the fan duct downstream of the inlet fan and is configured to adjust a direction of the fan exit air received from the blades. The outlet guide vane assembly includes a first plurality of outlet guide vanes including a first outlet guide vane configured to rotate to a first angle so as to redirect the fan exit air in a first direction and a second outlet guide vane configured to rotate to a second angle so as to redirect the fan exit air in a second direction. The second outlet guide vane is located at a different circumferential position than the first outlet guide vane.
Abstract:
The present invention relates to a stator vane adjusting device of a gas turbine having a plurality of stator vanes each swivellable about a radial axis and arranged in at least two radial planes, as well as at least two stator vane adjusting rings connected to the respective stator vanes and rotatable in the circumferential direction by at least one actuating device, characterized in that the actuating device is connected to the stator vane adjusting rings by means of a first transmission device and that a second transmission device, which is not coupled to the actuating device, is arranged essentially opposite to the first transmission device, with the second transmission device being connected to the stator vane adjusting rings.
Abstract:
A linkage system includes a pivot bias assembly at each pivot which removes internal clearances and resultant vibratory wear. The pivot bias assembly includes a cavity which defines an axis transverse to the pivot axis. A spring biased piston is located therein to provide a radial load toward the rotation pivot to close radial clearances. The spring loaded piston reduces all the radial internal clearances to zero to reduce vibratory wear created by engine vibratory inputs. An assembly flat is positioned such that the component is assembled in a non-operating angular position such that the spring biased piston is under minimal or no load then the component is rotated into operating position so as to preload the spring biased piston.
Abstract:
The subject matter of this specification can be embodied in, among other things, a track lock assembly that includes a pawl assembly comprising a pawl arm extending from a pawl axis and configured to engage a slot in a slider assembly, a cam arm extending from the pawl axis and having a pawl cam, and a compliant member, and a position lock assembly comprising a first lock arm extending from a lock axis and an actuator configured to urge rotation of the first lock arm between a lock locked position and a lock unlocked position, the first lock arm configured to engage and retain the cam arm in a pawl locked position when the first lock arm is in the lock locked position and disengage the cam arm in the lock unlocked position such that the compliant member is able to urge the pawl assembly to a pawl unlocked position.
Abstract:
Embodiments may include an actuation system for an exhaust nozzle of a gas turbine engine. The actuation system may comprise a plurality of flap assemblies including a plurality of convergent flaps movable between first and second convergent positions and a plurality of divergent flaps movable between first and second divergent positions. Each of the plurality of divergent flaps may extend from a respective one of the plurality of convergent flaps. The system may further include a first sync ring rotatably carried by an engine body and configured to synchronously move the divergent flaps between the first and second divergent positions and a second sync ring rotatably carried by the engine body and configured to synchronously move the convergent flaps between the first and second convergent positions. A method may translate rotation of the sync ring to movement of a vehicle surface between radially outward and inward positions.
Abstract:
A method and system for imparting a linear motion to a flexible shaft is disclosed. The system includes a bellcrank having a first arm, a second arm, and a first pivot pin therebetween. The system further includes an actuating device coupled to the first arm and configured to apply a force to cause the bellcrank to rotate about the first pivot pin. Still further, the system includes a second pivot pin coupled to a rod-end of the flexible shaft and further coupled to a slotted hole on the second arm. Yet still further, the system includes a follower surface on the rod-end of the flexible shaft and configured to slide on a cam surface machined on the second arm. Upon application of the force to the first arm, the flexible shaft moves in a substantially linear motion.
Abstract:
The present invention relates to a component arrangement of a gas turbine, this arrangement having a first gas turbine component, in particular a first wall segment (10) of a gas turbine duct casing; a second gas turbine component that can be joined thereto, in particular a second wall segment (20) of a gas turbine duct casing, with a flange (21), which is particularly bent; and an eccentric clamping element (30), which is mounted rotatably about an axis of rotation (A) on the first gas turbine component and has an eccentric contour portion (31), whose radial distance (r) to the axis of rotation varies by an angle (φ) about the axis of rotation, in order to press the flange (21) of the second gas turbine component (20) against the first gas turbine component, in particular to clamp it between the first gas turbine component and the eccentric contour portion (31).
Abstract:
An actuator system mounted to a gas turbine engine that communicates mechanical power for positioning variable guide vanes within the gas turbine engine. The actuator system includes a torque box having components for communicating mechanical power to the variable guide vanes for positioning the vanes and an actuator mechanically coupled to provide mechanical power to the components of the torque box used to communicate the provided mechanical power to the inlet guide vanes. The actuator is mounted to the torque box via an elongate fastener extending in one direction and another elongate fastener extending in another direction.
Abstract:
A turbine having a cam follower operable to control turbine blade pitch in association with a position thereof is provided and includes an axially movable plate, a rotational and axially movable flyweight and a system operably coupled to the plate and the flyweight whereby, at low RPMs, the system prevents flyweight rotation such that the plate and the flyweight position the cam follower at a first position, at medium RPMs, the system permits flyweight rotation such that the plate and the flyweight position the cam follower at a second position, and, at high RPMs, the system prevents further flyweight rotation and permits initial axial movement of the plate and the flyweight such that the plate and the flyweight position the cam follower at a third position.
Abstract:
One or more heat exchangers mounted in a duct have heat transfer cooling passages therein and a variable geometry flow restrictor is integral with each of the heat exchangers. An annular slide valve axially translatable within the duct is operable to open and close or vary a variable area between the heat exchangers and one of inner and outer casings bounding the duct. The heat exchangers may be being circumferentially distributed around an annular duct and include radial or circumferentially curved heat transfer tubes or vanes.