Abstract:
A fluidic rotor rotary machine has a rotor comprising at least one blade (4) mounted on an arm (2) rotating about a main axis (1) of the rotor, the rotor being held by a support structure (5) in an orientation such that said axis (1) is essentially perpendicular to the fluid flow direction, the blade (4) being pivotally mounted about a rotational axis (3) parallel to the main axis (1), the machine being characterized in that it comprises means for generating a relative rotational movement of the blade (4) relative to the arm (2) at the rotational axis (3), thereby varying the blade angle, said means comprising an eccentric mechanism rotating on said blade rotational axis.Application in particular to propellers and generators operating according to Lipp-type or Voith-Schneider-type kinematics, with possible mode switching.
Abstract:
The apparatus includes a wind turbine system for the collection of wind energy and the conversion thereof through staged-compression into highly compressed gas. The highly compressed gas is routed to a central tank, and then expanded into a plurality of concentric ring tanks, each storing gas at successively lower pressures. The cooling resulting from this expansion is utilized to cool hot compressed gas from an intermediate line of gas compressors, increasing the efficiency of the following compressors. This absorption of heat also improves the efficiency of the gas turbines driving electrical generators. The gas compressor in each wind turbine is located near ground level, and driven by a vertical shaft passing through the wind turbine support tower. One embodiment has conventional radially extending blades, and another embodiment has ducted blades to withstand higher winds. Both ground mounted and deep water adaptions for the wind turbines are disclosed.
Abstract:
A vertical axis wind turbine includes a support axis and a wind wheel. The wind wheel includes a rotation base, plural rotation stand sets, plural deflection structures, plural blades, and plural deflection-limiting structures corresponding to the plural blades. The rotation base is rotatably disposed on the support axis. The plural rotation stand sets may define a rotation plane. A first end of each rotation stand set is fixedly disposed on the rotation base. Each blade is pivotally coupled to a second end of the corresponding rotation stand set through the corresponding deflection structure. Consequently, an angle of attack of the blade in an airflow is correspondingly adjusted. When one of the plural blades is deflected, the corresponding deflection-limiting structure generates a first rotational torque in a first rotating direction or a second rotational torque in a second rotating direction so as to rotate the rotation base.
Abstract:
A fluidic rotor rotary machine has a rotor comprising at least one blade (4) mounted on an arm (2) rotating about a main axis (1) of the rotor, the rotor being held by a support structure (5) in an orientation such that said axis (1) is essentially perpendicular to the fluid flow direction, the blade (4) being pivotally mounted about a rotational axis (3) parallel to the main axis (1), the machine being characterized in that it comprises means for generating a relative rotational movement of the blade (4) relative to the arm (2) at the rotational axis (3), thereby varying the blade angle, said means comprising an eccentric mechanism rotating on said blade rotational axis.Application in particular to propellers and generators operating according to Lipp-type or Voith-Schneider-type kinematics, with possible mode switching.
Abstract:
A horizontal-axis wind turbine using airfoil blades with uniform in width and thickness, comprising a tower installed vertically from ground surface, a nacelle rotatable connected to center of a vertical axis on top of the tower, a rotating body axially bonded to the nacelle, and one or more blades connecting and forming a pitch angle on the outer periphery of the rotating body, and the blade having an airfoil shape and having uniform in width and thickness in a longitudinal direction and generating torque from lift about a tip of the blade is provided.
Abstract:
A wind turbine with a passive pitch control system is disclosed. The wind turbine comprises a tower with a nacelle mounted to the tower. A hub is rotatably mounted to the nacelle. The hub has a plurality of blades extending therefrom with each blade rotatable around a longitudinal axis of each blade. A pitch control system is operatively associated with each blade. The pitch control system controls the pitch of each blade around the blade's longitudinal axis. In a preferred embodiment, the pitch control system comprises a flyweight governor and a preloaded spring biased against each other.
Abstract:
A wind turbine includes rotor blades pivotably mounted in a gondola such that the pitch of the blades is adjustable, and pitch adjustment mounted coaxially and pivotably on the rotor axle such that the pitch adjustment are rotatable relative to that axle. The gondola is furthermore connected via torsion positioning to the axle, such that it can rotate relative to the pitch adjustment to adjust the pitch of the rotor blades. The wind turbine may also include a cable for each rotor blade, which are each with one end connected to the blade and with their opposite end to the rotor axle, such that the blades are supported by the cables against movement in the radially outward direction.
Abstract:
A device for utilizing the kinetic energy of flowing water with several pressure surfaces rotating around a common rotor axis. The pressure surfaces can be pivoted around axes arranged parallel to and spaced from the rotor axis, in particular for the production of energy from tidal currents of the sea. The pressure surfaces are attached to the pivot axes in a pendulum-like manner and stop elements for the pressure surfaces are arranged in the radial planes between the pivot axes and the rotor axis. The pivot axes of the pressure surfaces are attached by their ends to support disks radially directed towards the rotor axis. The support disks are located at the ends of the rotor axis. The support disks are embodied in at least a double-walled manner. Alternatively or additionally each pressure surface is embodied at least in a double-walled manner.
Abstract:
A variable speed wind turbine having a doubly fed induction generator (DFIG), includes an exciter machine mechanically coupled to the DFIG and a power converter placed between a rotor of the DFIG and the exciter machine. Thus, the power converter is not directly connected to the grid avoiding the introduction of undesired harmonic distortion and achieving a better power quality fed into the utility grid. Moreover, the variable speed wind turbine includes a power control and a pitch regulation.
Abstract:
The present disclosure relates to a turbine including a central axis, a variable pitch blade, and a frame link operably coupled with the central axis and the blade, the blade configured such that as the blade rotates about the central axis, the blade may be pivoted relative the frame link from a first position to a second position. The present disclosure also relates to a method for reducing the negative torque on a wind turbine including providing a turbine having variable pitch blade for rotation about a central axis, the blade operably coupled with the central axis via a frame link, and positioning the blade, frame link, and central axis, such that the blade is pivoted relative the frame link from a first position to a second position so as to reduce negative torque on the central axis caused by the blade heading generally into oncoming wind.