Abstract:
A power generation system includes a flotation assembly configured to float in water and a first harnessing assembly coupled to the flotation assembly and disposed in an airflow above the water. The first harnessing assembly is configured to harness the airflow to create a first rotational energy. The system also includes a second harnessing assembly coupled to the flotation assembly and disposed in the water. The second rotational assembly is configured to harness movement of the water to create a second rotational energy. The flotation assembly also includes a generating module to convert the first and second rotational energies into electrical energy.
Abstract:
A runner for a hydraulic machine comprising a band, a crown, a plurality of blades extending between the crown and the band, wherein the runner comprises a plurality of runner segments which together define the runner, each runner segment comprising a band portion, a crown portion and a blade, which portions are integrally formed with one another, each runner segment being attachable to another segment at a band joining edge and a crown joining edge, wherein the band joining edge and the crown joining edge are each spaced apart from the blade of the segment.
Abstract:
A gate mechanism (20) is adapted for mounting within the extension (4) of a trawl net (1), the gate mechanism comprising a turbine (47/147/247) for powering rotation of the gate mechanism as it is dragged through the water within the trawl net.
Abstract:
The present invention relates to a self-powered remote control system for a smart valve, the system comprising: a smart valve for regulating the flow of a fluid in a pipe; a sensing module for sensing the flow rate, pressure, and temperature of the fluid in the pipe; a power generation module for generating power according to the flow of the fluid; a control module for controlling the lifting or lowering of the opening/closing plate of the smart valve according to the flow rate, pressure, or temperature state sensed by the sensing module; and an administrator terminal for transmitting and receiving control signals to and from the control module, wherein the power generation module comprises: a conical fluid guide member provided in a direction in which the fluid is supplied; and a rotating member rotated by the fluid guided through the fluid guide member, whereby the operation of the smart valve can be controlled by manipulating the administrator terminal at a remote location, so as to supply the fluid into the pipe or intercept the supply of the fluid into the pipe.
Abstract:
The application relates to unidirectional hydrokinetic turbines having an improved flow acceleration system that uses asymmetrical hydrofoil shapes on some or all of the key components of the turbine. These components that may be hydrofoil shaped include, e.g., the rotor blades (34), the center hub (36), the rotor blade shroud (38), the accelerator shroud (20), annular diffuser(s) (40), the wildlife and debris excluder (10, 18) and the tail rudder (60). The fabrication method designs various components to cooperate in optimizing the extraction of energy, while other components reduce or eliminate turbulence that could negatively affect other component(s).
Abstract:
Provided is a hydroelectric power generator for a pipeline that is installed at a position in a pipeline to generate electricity using a rotating turbine by inducing a flow velocity of water therein and uses environment-friendly energy through the water velocity while varying in size in accordance with the size of a pipeline to generate electricity even at a low-speed stream. The hydroelectric power generator for a pipeline generates electricity with high efficiency by increasing an angular speed at the same flow speed by adjusting the number and radius of turbine blades.
Abstract:
The invention disclosed herein comprises a system focusing water current into a relatively smaller diameter lumen, imparting vortical movement to the current, and directing the water vortex through an even smaller diameter lumen en route to turbine blades having long curved blades rotatable along an axis parallel with the lumen. Rotation of the turbine blades turns gearing interfacing with the circumference of the turbine assembly, to rotate a drive shaft connected to a generator.
Abstract:
A family of dual-winglet rotor blades are designed to dissipate the low energy flow in the wake of a turbine rotor. In some embodiments a dual-winglet having a first winglet transitioning from the lift surface of a rotor blade and a second winglet transitioning from the pressure surface of the rotor blade creates two distinct streams in the wake of the rotor. In one embodiment the first winglet curving away from the lift surface turns the lift force toward the center of the rotor plane while a second, smaller, winglet curving away from the pressure surface of the rotor blade turns the lift force away from the center of the rotor plane. In other embodiments winglets create a virtual shroud that expands the wake to dissipate the low-energy flow in the turbine wake. In another embodiment a dual winglet combines the aforementioned mixing effect with the wake expansion effect.
Abstract:
When traversed by a flow of water, a hydraulic machine rotating part rotates around an axis of rotation. It includes runners which are distributed around the axis of rotation and each extend between a leading edge and a trailing edge. Each runner can include a first part which defines its leading edge and a second part which is attached to the first part and defines the trailing edge at least in part. The second part can be elastically deformable or displaceable in a reversible manner with respect to the first part, under the action of the flow of water, the second part defining, when the machine operates, the direction of the flow of water downstream of the runner.
Abstract:
A fluid turbine 65 is provided, including a rotor 16, including a vertical rotation axis 12, on which at least two rotor blades 18, 20, 22 are arranged, wherein the rotor 16 is arranged within a housing 70, wherein a top 72 and a bottom 74 of the housing 70 are arranged essentially vertical to the rotation axis 12. Each rotor blade 18, 20, 22 has at least a first height 68 at a second distance 69 parallel to the rotation axis 12 and the second height 66 at a second distance 67 parallel to the rotation axis 12, wherein the first distance 69 and the first height 68 are smaller than the second distance 67 and the second height 66, wherein the rotor 16 is rotatable relative to the housing 70. The housing 70 has at least a first distance 78 between the top and bottom 72, 74 of the housing 70 at a first distance 69 parallel to the rotation axis 12 and a second distance 76 between the top and bottom 72, 74 of the housing 70 at a second distance 67 parallel to the rotation axis 12, wherein the first distance 69 parallel to the rotation axis 12 and the first distance 78 between the top and bottom 72, 74 of the housing 70 are smaller than the second distance 67 parallel to the rotation axis 12 and the second distance 76 between the top and bottom 72, 74 of the housing 70. With this fluid turbine 65, at least one fluid slot 82 is arranged in the top 72 and/or the bottom 74 of the housing 70. Due to the design of the housing 70, the fluid turbine 65 has particularly high efficiency.