Abstract:
The present disclosure relates to a geared gas turbine engine for an aircraft. Example embodiments include a gas turbine engine for an aircraft including: an engine core having a turbine, a compressor, and a core shaft connecting the turbine to the compressor; a fan located upstream of the engine core, the fan having a plurality of fan blades; and a gearbox that receives an input from the core shaft to drive the fan at a lower rotational speed than the core shaft, the gearbox having a gear ratio of around 3.4 or higher, wherein the gas turbine engine is configured such that a jet velocity ratio between a first jet velocity exiting from a bypass duct of the engine and a second jet velocity exiting from an exhaust nozzle of the engine core is within a range from around 0.75 to around 0.82.
Abstract:
The invention relates to a valve for alternately filling two working chambers (A, B) of a piston-cylinder system (1, 2, 3) of a pump with a fluid, wherein the valve has two valve pump outlets (PA, PB), for connection to the working chambers (A, B) of the pump and has a valve control element (64) that is displaceably arranged in a space of a valve housing (60, 61, 76, 77) and can be movably driven backwards and forwards between two end positions by a fluid, wherein the valve control element (64) has control ducts (67, 82, 83, 84) that co-operate with housing ducts (51, 71, 72, 80, 81) arranged in the valve housing (60) wherein the first valve pump outlet (PA) is connected to the housing ducts (71, 80) and the second valve pump outlet (PB) is connected to the housing ducts (72, 81), wherein in a central region between the two end positions the valve pump outlets (PA, PB) are connected to one another via control ducts (82, 83, 84) of the valve control element (64).
Abstract:
An improved uniflow engine has a plurality of vertically extending cylinders distributed in-line along a horizontally extending common crankshaft connected to pistons reciprocating in the cylinders. A working fluid vapor is supplied to those cylinders in which the respective pistons are in their working strokes to initiate rotation of the crankshaft in a predetermined direction regardless of where the crankshaft has stopped last. Once rotation is initiated and a predetermined mode change speed attained in a “start-up mode” engine operation, vapor inlet valves are controlled by an inlet valve control mechanism to change engine operation over to a “running mode”. In the start-up mode, incoming vapor is admitted over a substantial portion of the piston working stroke, whereas in the “running mode” vapor inflow is terminated relatively early in the working stroke so that a vapor change does work in expanding against the piston. A mode switch valve including a check valve and a control piston controls a closing rate of each of the vapor inlet valves. A wedge fixed to a head portion of each piston cooperates with a wedge fixed to each vapor inlet valve to close the vapor inlet valve at a predetermined position of the piston.
Abstract:
A hydraulically driven reciprocating motor (10) includes a hydraulic cylinder (12) and a piston (60) mounted for reciprocation within the cylinder. The piston has passageways (74) formed therethrough which are normally sealed by a floating valve (90). Rods (76) are carried by the piston (60) and normally project from one end thereof. When the piston (60) reaches the limit of its travel in one direction the rods (76) disengage the floating valve (90), thereby opening the passageways (74) through the piston (60) to permit movement of the piston (60) in the opposite direction. When the piston (60) reaches the limit of its travel in the opposite direction, the floating valve (90) again seals the passageways (74) through the piston (60) to complete the operating cycle of the motor (10).
Abstract:
A downhole, hydraulically actuated pump assembly, having an engine reciprocatingly connected to a production pump. Power fluid is conducted downhole to the engine of the pump assembly, while production fluid and spent power fluid is conducted uphole to the surface of the ground.The pump assembly includes a housing within which spaced, axially aligned, cylindrical chambers reciprocatingly receive spaced engine and pump pistons which are connected together in a manner to enable the engine to reciprocate the production pump.A mechanically actuated valve assembly is contained within the engine piston and is arranged respective to various different flow passageways so that flow of power fluid through the engine forces the engine piston to reciprocate.The valve assembly includes a control rod and a valve element concentrically arranged respective to one another and to the engine piston. The valve element is reciprocated respective to the engine piston in response to reciprocation of the control rod. Abutment means formed on the engine cylinder shifts the control rod each stroke of the piston, thereby causing the valve element to shift respective to the piston, whereupon various different flow passageways are aligned with one another to cause power fluid to be effected upon the engine in such a manner that the engine piston reciprocates to thereby force the pump piston to be reciprocated within its cylinder.
Abstract:
A reciprocating fluid driven apparatus has a hollow elongate barrel with an inlet and an outlet in fluid communication with portions of a pipeline, a piston reciprocating within the barrel and having a through hole for fluid communication between spaces above and below the piston, and a cyclically operable closure member for opening and closing the through hole allowing upward and downward piston movements, the piston having piston rods extending from an upper end and a lower end of the piston to an exterior of the barrel so that a pressure at opposite sides of said piston is balanced to allow operation at unlimited pressures.
Abstract:
A device for controlling a pneumatic cylinder device, being of a double cylinder construction comprising an outer cylinder and an inner cylinder sealably fitted in the outer cylinder to slide along the outer cylinder. In the inner cylinder, a piston with a valve at one side thereof or valves at both sides thereof is slidably disposed. To control the valve or valves, an adjusting rod is provided which is slidably and rotatably disposed in the piston and its piston rod and adjusted by an operating lever. Alternatively, the double cylinder construction comprises a pair of cylinders disposed axially in parallel to each other. In the cylinders, pistons are disposed, one of which has a valve at one side thereof or valves at both sides thereof. The cylinders are communicated with each other by a communication construction having a communication adjusting groove and an adjusting lever for adjusting the communication area of communication adjusting groove. In either case, controls of operation load, operation speed and braking are easily achieved during the compressing and stretching operations without requiring a separate device, by controlling the valve or valves and/or the communication adjusting groove.