Abstract:
Provided is a hydraulic excavator including a controller that can control a work device by utilizing an excavation work control for causing a claw tip of a bucket to move along a predetermined target surface and a leveling work control for causing the bucket to move along the target surface while maintaining the posture of the bucket with respect to the target surface, in which: the controller, based on posture data and size data on a work device and position data on the target surface, calculates an arm tip difference Dva that is the distance from the tip of an arm to the target surface; and the controller executes the leveling work control in a case of the calculated arm tip difference being equal to or less than a predetermined threshold dv1, there being no input of a bucket operation to an operation lever, and there being an input of an arm operation to the operation lever, and otherwise executes the excavation work control.
Abstract:
Provided is an automatic leveling system restraining leveling-objects from collapsing. The automatic leveling system includes a work machine that performs leveling motion, an imaging device, and a controller. The imaging device acquires three-dimensional information about the shape and position of at least one of the leveling-objects and a peripheral object. The work machine is provided with a work attachment including a tip attachment. The controller sets a leveling area based on the acquired three-dimensional information and makes the work machine perform the leveling motion by the tip attachment within the leveling area.
Abstract:
A valve system, including first, second, third and fourth ports, a first flow path connecting the first and second ports, a second flow path connecting the third and fourth ports, with valves connected in the first and second flow paths, and energizable to block the same. A third flow path connects the first and second ports and a fourth flow path connects the third and fourth ports. The third and fourth flow paths are more restricted than the respective first and second flow paths. A fifth flow path connects the first and fourth ports and a sixth flow path connects the second and third ports. When the third and fourth flow paths are open, the first, second, fifth, and sixth flow paths are blocked. When the first and second flow paths are open, the third, fourth, fifth, and sixth flow paths are blocked. When the fifth and sixth flow paths are open, the first, second, third, and fourth, flow paths are blocked.
Abstract:
An intelligent knuckle boom control system is disclosed where hoist and stick cylinders raise and lower main and stick booms, respectively, a base end control valve controls flow to the hoist and stick cylinder base ends, a hoist rod control valve controls flow to the hoist cylinder rod end, and a stick rod control valve controls flow to the stick cylinder rod end. A microprocessor computes control signals to direct flow through the control valves based on operator commands and boom position readings. The system can include an energy storage system for storing excess energy and releasing the stored energy, where the microprocessor directs storage of excess energy and release of stored energy. The energy storage system can include a hydraulic accumulator, an accumulator control valve and hydraulic pressure sensors; where the microprocessor receives pressure sensor readings and computes accumulator control valve control signals.
Abstract:
A system and a method for controlling a tool pivotably mounted to an articulated boom connected to a work machine having a control unit. The solution: 1) determining the direction a predetermined point of the boom or the tool is moving to, i.e. the moving direction, and 2) controlling orientation of the tool as a function of one or several predetermined dependencies, the predetermined dependencies defining at least the orientation of the tool in relation to the moving direction. According to an example the work machine is a forest machine.
Abstract:
A working apparatus comprises a working machine, a tool, a boom construction, and a control system. A first end of the boom construction is connected to the working machine. The tool is connected to an opposite second end of the boom construction. The boom construction comprises a first boom and a first actuator controlling the first boom, a second boom articulated to the first boom and a second actuator controlling the second boom, and a third actuator controlling the position of the tool. The control system has a link mode, a parallel mode, and a tool-levelling mode.
Abstract:
The invention comprises a work vehicle, a boom attached to the vehicle, a tool pivotally attached to the boom, an actuator for controllably moving the tool about its pivot, and an angular velocity sensor for sensing the angular velocity of the tool. A controller is adapted to perform a tool auto-hold function, automatically maintaining an initial tool orientation by processing the angular velocity data and commanding movement of the tool actuator to hold the angular velocity at zero. The controller is adapted to discontinue the tool auto-hold function when the operator manipulates a tool command input device affecting tool actuator movement, and resume the tool auto-hold function at the new orientation affected by the operator. Manipulation of an auto-hold command input device allows the operator to selectively enable and disable the tool auto-hold function.
Abstract:
A loader having a body on which is pivotally mounted a jib system and a bucket and which is operated by fluid motor means is provided with a discharge conduit extending from the bucket raising side of one of the fluid motor means and control valve means to open the conduit to fluid flow whereby movement of the bucket over the loader cab is prevented.
Abstract:
A shovel control method includes performing a plane position control or a height control of an end attachment by an operation of one lever. The plane position control is performed while maintaining a height of the end attachment. The height control is performed while maintaining a plane position of the end attachment.
Abstract:
A shovel control method includes performing a plane position control or a height control of an end attachment by an operation of one lever. The plane position control is performed while maintaining a height of the end attachment. The height control is performed while maintaining a plane position of the end attachment.