Abstract:
A magnetic force generating device is provided for application to a first object that is movable relative to a second object providing a first magnetic force, and includes a coil disposed on the first object, a sensing module disposed on the first object adjacent to the coil for sensing a distance between the first and second objects, and a processor. When the sensed distance is shorter than a threshold value, the processor enables provision to the coil of a driving current having a magnitude negatively correlated to the sensed distance, so that the coil generates a second magnetic force, which is repulsive to the first magnetic force, in response to the driving current.
Abstract:
A magnetic force generating device is provided for application to a first object that is movable relative to a second object providing a first magnetic force, and includes a coil disposed on the first object, a sensing module disposed on the first object adjacent to the coil for sensing a distance between the first and second objects, and a processor. When the sensed distance is shorter than a threshold value, the processor enables provision to the coil of a driving current having a magnitude negatively correlated to the sensed distance, so that the coil generates a second magnetic force, which is repulsive to the first magnetic force, in response to the driving current.
Abstract:
A highway guardrail post comprises an elongated one-piece roll-formed metal body including a front wall defining an attachment face, a pair of opposing side walls orthogonal to the front wall, a first pair of inverted corners respectively connecting the pair of side walls to the front wall, and a second pair of inverted corners respectively extending from the pair of side walls and terminating in a pair of spaced rear edges to define a rear access opening opposite the front wall. The guardrail posts may be manufactured by roll-forming a metal sheet or coil and cutting the roll-formed metal sheet or coil into lengths.
Abstract:
A road safety barrier having a plurality of ropes supported by posts rigidly mounted on or in the ground is described. Each rope is held in tension against the posts and supported in a longitudinally oriented indentation in a side of the posts. The ropes are released from a post and the post is not pulled from the ground when a vertical force is exerted on the rope. The post may have a circular cross-section and the indentation has a bottom oriented substantially parallel to the ground such that the rope is biased to exit upward out of the indentation. The ropes when weaved are tensioned against the posts and this gives rise to a combined frictional resistance to displacement of the ropes relative to each post along the length of the safety barrier.
Abstract:
A slider assembly includes: a front section; a back section, wherein the front section conforms to the cross sectional profile of rails forming the terminal end of a barrier, to which the slider will be fitted; and wherein the front section in combination with the back section create an internal space there between, the internal space dimensioned, to be capable of substantially surrounding both an associated first and second rails of the terminal end, as well as at least two further rails located downstream of said first and second rails,wherein the slider assembly has first and second opposed portions and the slider assembly is configured so that the first and second opposed portions move with respect to each other so the slider assembly applies an increasing compressive force to telescoping rails as a consequence of the slider assembly travelling along one or more subsequent rail(s) during telescoping.
Abstract:
Disclosed herein are various embodiments of systems related to modular earth retaining wall systems. In one embodiment, among others, a precast retaining wall block configured for assembly into a retaining wall includes a front face portion, a web portion extending outwardly from a rear surface of the front face portion, and aligning elements. The web portion includes a vertical center portion and left and right protrusions extending outwardly from the lower sides of the vertical center portion. The left and right protrusions may be substantially triangular. The aligning elements extend downwardly from a bottom surface of the left and right protrusions for locking the precast retaining wall block to the vertical center portion associated with an underlying precast retaining wall block associated with an underlying row.
Abstract:
An energy absorbing vehicle barrier includes a frame defining a compartment. In one embodiment, the frame includes a nose. An energy absorbing cartridge is disposed within the compartment. A retaining device is coupled to the frame, with the retaining device disposed above and extending over at least a portion of an upper surface of the cartridge. The retaining device may contact and engage the upper surface of the cartridge when the barrier is impacted by a vehicle. In this way, the retaining device substantially prevents movement of the cartridge in at least a vertical direction during the impact. Methods of using and assembling the barrier are also provided.
Abstract:
A road safety barrier having four or more ropes 4-7 supported by posts 1-3 rigidly mounted on or in the ground is described. Each rope is held in tension against the posts and follows a sinuous path between the posts. The ropes are tensioned against the posts and this gives rise to a combined frictional resistance to displacement of the ropes relative to each post along the length of the safety barrier. The structure of at least some of the posts and/or their mounting with respect to the ground defines a minimum bending yield strength in a direction along the length of the barrier. This minimum bending yield strength is greater than the bending moment resulting from the combined frictional resistance forces acting on the post.
Abstract:
A protection system to prevent or minimize likelihood of injury to a rider at a racetrack if the jockey is thrown over the rail which surrounds the track. Usually the rail is supported by a curved post which extends upwardly from the ground and inwardly toward the track. A series of deflector panels are provided along the rail and are biased to generally horizontal position adjacent the rail by a coil spring device so that when a rider is thrown over the rail and contacts the deflector device the deflector then moves downwardly in response to the impact of the rider. The deflector then return to a generally horizontal position by the bias device after the rider has rolled off of the deflector.