Abstract:
Disclosed is a steel wire rope for conveyor belts. The steel wire rope includes a central steel wire, a steel wire layer externally wound on the central steel wire, and a plurality of external steel wire strands. Each external steel wire strand includes a core steel wire and N external steel wires. The central steel wire, the steel wire layer externally wound on the central steel wire, and the plurality of external steel wire strands are wound into a steel wire rope for conveyor belts in one step. The steel wire layer is externally wound on the outer side of the central steel wire, the external steel wire strands are wound to wrap the outer side of the steel wire layer, and the external steel wire strands are in line contact with the steel wire layer.
Abstract:
A method is provided for forming a high strength synthetic rope useful for towing warps, trawler warps, yachting ropes, mooring lines, anchor lines, oil derrick anchoring lines, seismic lines, seismic lines and any other uses for rope, cable or chain.
Abstract:
The invention relates to a hybrid rope having a core containing high modulus polyethylene (HMPE) yarns surrounded by an outer layer containing steel wire strands, wherein the core is coated with a plastomer, the plastomer being a semi-crystalline copolymer of ethylene or propylene and one or more C2 to C12 α-olefin co-monomers and the plastomer having a density as measured according to ISO1183 of between 870 and 930 kg/m3.
Abstract translation:本发明涉及一种混合绳索,其具有包含由包含钢丝股线的外层包围的高模量聚乙烯(HMPE)纱线的芯,其中所述芯部由塑性体涂覆,所述塑性体是乙烯或丙烯的半结晶共聚物和 一种或多种C 2 -C 12α-烯烃共聚单体和根据ISO1183测得的密度在870和930kg / m 3之间的塑性体。
Abstract:
A method of making colored multifilament ultrahigh molecular weight polyolefin yarn, including feeding at least one substantially untwisted multifilament ultrahigh molecular weight polyolefin yarn, coating the substantially untwisted multifilament yarn with a coating composition comprising colorant in a thermoplastic resin carrier, with the coating composition being adhered to the filaments of the multifilament yarn, and heating the multifilament yarn while stretching the yarn without fusing of the filaments of the multifilament yarn. The resultant yarn is a colored multifilament yarn having improved color-fastness. The thermoplastic resin has a lower melting point than the filaments of the multifilament yarn. Preferably, a plurality of the substantially untwisted multifilament ultrahigh molecular weight polyolefin yarns are processed together. Articles formed from the colored multifilament yarns may be prepared and subjected to a heating step to provide a colored surface coating of the thermoplastic resin over the article.
Abstract:
A method for producing a cable or cable element from individual elements is provided. The method comprises heating the individual elements before or during a stranding process until they are at least close to plastification and cooling the individual elements to a solidification temperature of a plastic. A cable or cable element comprising individual elements that are twisted together to form the cable is also disclosed. The individual elements are heated either before or during a stranding process until they are at least close to plastification, and are subsequently cooled to a solidification temperature of the plastic until they leave a stranding machine. A stranding device for the production of a cable or cable element from individual elements is also disclosed. The stranding device comprises a heating device which acts on the individual elements and a cooling device located downstream of the heating device in a direction of processing.
Abstract:
Elongated bodies made from high tenacity polyolefin fibers are provided that are useful as fishing lines, and processes for making the lines. Fibers having tenacities of at least 39 g/denier are braided and fused together to form braided bodies having very small diameters.
Abstract:
A process for producing a high strength rope comprising the step of i) providing a uniaxially oriented tape (10) comprising ultra-high molecular weight polyethylene, the tape (10) having a tensile strength of at least 0.9 GPa, and ii) simultaneously twisting and fibrillating the tape (10) into a twisted strand of fibrillated tape with a coherent network of filaments and fibrils. A rope obtainable by the process and products comprising the rope are also disclosed.
Abstract:
Disclosed is a method for producing a high strength synthetic strength member (7) containing rope (1) capable of being used with powered blocks where such rope has lighter weight and similar or greater strength than steel wire strength member containing ropes used with powered blocks. Disclosed also is the product resulting from such method. The product includes a synthetic strength member, a first synthetic portion (9) and a second synthetic portion. The first synthetic pillion is enclosed within the strength member and the second synthetic portion is situated external the strength member. At least a portion of the second synthetic portion also is situated internal a sheath (8) formed about the strength member. The second synthetic portion has a minimal of 8% at a temperature of between negative 20 and negative 15° C.
Abstract:
A rope with spiral teeth includes a first rope including a first core material with a first resin covering the first core material and a second rope including a second core material with a second resin covering the second core material. The second rope is spirally wound around an outer circumferential surface of the first rope. At least one of the first resin and the second resin contains an infrared reflectance adjusting material to make a temperature rise characteristic of the first resin and a temperature rise characteristic of the second resin different from each other, and the first rope and the second rope are bonded together, preferably without adhesive.
Abstract:
The invention provides wire rod excellent in drawability and steel wire made from the wire rod as starting material with high productivity at good yield and low cost. A hard steel wire rod of a specified composition is hot rolled, the hot-rolled steel is coiled in a specified temperature range, and the coiled steel is subjected to patenting at a predetermined cooling rate, thereby affording a high-carbon steel wire excellent in workability. It is high-strength steel wire excellent in drawability comprising a pearlite structure of an area ratio of 97% or greater and the balance of non-pearlite structures including bainite, degenerate-pearlite and pro-eutectoid ferrite and having a pearlite block size of not less than 20 μm and not greater than 45 μm. The invention also provides a high-carbon steel wire excellent in ductility, which is manufactured by subjecting the wire rod to intermediate patenting and cold drawing and has a tensile strength of 2800 MPa or greater.