Abstract:
A process is disclosed for separation and recovery of vanadium, molybdenum, iron, tungsten, cobalt and nickel from alumina-based materials, mattes, ores, manufacturing by-products and waste. These elements are oxidized. The oxides are reacted with gaseous HCl to form volatile chloride-bearing compounds that subsequently sublimate. The volatile compounds are condensed in a downward-stepped thermal gradient that allows collection of moderate to high purity compounds of individual elements with exception of a nickel-cobalt co-condensate. Nickel is separated from cobalt by precipitation of nickel chloride from concentrated HCl pressurized with gaseous HCl.
Abstract:
A process is disclosed for separation and recovery of vanadium, molybdenum, iron, tungsten, cobalt and nickel from alumina-based materials, mattes, ores, manufacturing by-products and waste. These elements are oxidized. The oxides are reacted with gaseous HCl to form volatile chloride-bearing compounds that subsequently sublimate. The volatile compounds are condensed in a downward-stepped thermal gradient that allows collection of moderate to high purity compounds of individual elements with exception of a nickel-cobalt co-condensate. Nickel is separated from cobalt by precipitation of nickel chloride from concentrated HCl pressurized with gaseous HCl.
Abstract:
Disclosed is an α-phase nickel hydroxide and a preparation method and use thereof. The method for preparing an α-phase nickel hydroxide comprises the following steps: subjecting a biomass calcium source to a calcination to obtain a porous calcium oxide; under a protective atmosphere, mixing the porous calcium oxide with a first methanol-ethanol solvent to obtain a calcium oxide heterogeneous solution; under a protective atmosphere, mixing the calcium oxide heterogeneous solution with a nickel source homogeneous solution to obtain a mixture, and subjecting the mixture to a coprecipitation to obtain a nickel calcium hydroxide precursor, wherein the nickel source homogeneous solution is prepared with a nickel source containing crystal water as a solute and a second methanol-ethanol solvent as a solvent; and subjecting the nickel calcium hydroxide precursor to a calcium hydroxide removal treatment to obtain the α-phase nickel hydroxide.
Abstract:
A process is disclosed for separation and recovery of vanadium, molybdenum, iron, tungsten, cobalt and nickel from alumina-based materials, mattes, ores, manufacturing by-products and waste. These elements are oxidized. The oxides are reacted with gaseous HCl to form volatile chloride-bearing compounds that subsequently sublimate. The volatile compounds are condensed in a downward-stepped thermal gradient that allows collection of moderate to high purity compounds of individual elements with exception of a nickel-cobalt co-condensate. Nickel is separated from cobalt by precipitation of nickel chloride from concentrated HCl pressurized with gaseous HCl.
Abstract:
The invention relates to a method for forming a telescoped multiwall nanotube. Such a telescoped multiwall nanotube may find use as a linear or rotational bearing in microelectromechanical systems or may find use as a constant force nanospring. In the method of the invention, a multiwall nanotube is affixed to a solid, conducting substrate at one end. The tip of the free end of the multiwall nanotube is then removed, revealing the intact end of the inner wall. A nanomanipulator is then attached to the intact end, and the intact, core segments of the multiwall nanotube are partially extracted, thereby telescoping out a segment of nanotube.
Abstract:
A process is disclosed for separation and recovery of vanadium, molybdenum, iron, tungsten, cobalt and nickel from alumina-based materials, mattes, ores, manufacturing by-products and waste. These elements are oxidized. The oxides are reacted with gaseous HCl to form volatile chloride-bearing compounds that subsequently sublimate. The volatile compounds are condensed in a downward-stepped thermal gradient that allows collection of moderate to high purity compounds of individual elements with exception of a nickel-cobalt co-condensate. Nickel is separated from cobalt by precipitation of nickel chloride from concentrated HCl pressurized with gaseous HCl.
Abstract:
The invention relates to a method for forming a telescoped multiwall nanotube. Such a telescoped multiwall nanotube may find use as a linear or rotational bearing in microelectromechanical systems or may find use as a constant force nanospring. In the method of the invention, a multiwall nanotube is affixed to a solid, conducting substrate at one end. The tip of the free end of the multiwall nanotube is then removed, revealing the intact end of the inner wall. A nanomanipulator is then attached to the intact end, and the intact, core segments of the multiwall nanotube are partially extracted, thereby telescoping out a segment of nanotube.
Abstract:
The combination of the strongly oxidizing NF.sub.4.sup.+ cation with the strongly oxidizing NiF.sub.6.sup.-- anion in the form of the stable salt (NF.sub.4).sub.2 NiF.sub.6 produces a powerful oxidizer, useful for solid propellant formulations and NF.sub.3 -F.sub.2 gas generators. A process for its production is described.
Abstract:
A highly active, anhydrous nickel fluoride which is resistant to pickup of atmospheric water and is superior as a battery element in high energy lithium-nickel fluoride batteries, is produced by passing anhydrous gaseous hydrogen fluoride over amorphous basic nickel carbonate at a temperature of between 150*-300* C. and preferably 225*-250* C.
Abstract:
The present invention is directed to processing techniques and systems of metal fluoride based material, including but not limited to nickel difluoride, copper difluoride, manganese fluoride, chromium fluoride, bismuth fluoride, iron trifluoride, iron difluoride, iron oxyfluoride, metal doped iron fluorides, e.g., FexM1-xFy (M=metals, which can be Co, Ni, Cu, Cr, Mn, Bi and Ti) materials. An exemplary implementation involves mixing a first compound comprising a metal material, nitrogen, and oxygen to a second compound comprising hydrogen fluoride. The mixed compound is milled to form metal fluoride precursor and a certain byproduct. The byproduct is removed, and the metal fluoride precursor is treated to form iron trifluoride product. There are other embodiments as well.