Abstract:
Disclosed herein is a method of forming a spherical InP quantum dot, including: providing a compound containing indium (In); dissolving the compound in alcohol to form a solution; and introducing a compound containing phosphorus (P) into the solution. The method is advantageous because a spherical InP quantum dot can be formed, the method is environment-friendly because alcohol is used as a solvent, because InP quantum dots can be produced in large quantities because the InP quantum dots can be formed while putting all reactants into a reactor and slowly heating the reactants, and because the desired InP quantum dots can be easily recovered by decreasing the temperature of a reactor or by performing centrifugal separation at low speed.
Abstract:
Nanoparticles including a molecular cluster compound incorporating ions from groups 12 and 16 of the periodic table, as well as a core semiconductor material incorporating ions from groups 13 and 15 of the periodic table, are fabricated. The core semiconductor material is provided on the molecular cluster compound.
Abstract:
Apparatus for the preparation of a semiconductor compound having one component with a substantially higher vapor pressure than the other using a closed horizontal ampule in a pressure vessel with the two ends of the ampule located in respective heating ovens in which the ampule is self supporting without a support tube in the zone between the heating ovens thereby permitting this zone, which is highly heated by means of an inductive heating apparatus or the like, to be cooled directly by means of a cooling gas circulating in the pressure vessel and in which the coupling of the heating means to a graphite boat or the like inside the ampule is improved.
Abstract:
A method for the manufacture of a III-V compound in the form of nanoparticles, such as those used in semi-conductors. The reaction proceeds at atmospheric pressure in a reaction solution by the reaction of a III compound source and a V compound source. The reaction proceeds in solvent of high boiling point. The solvent contains a stabilizer and a base. The manufactured III-V compound is precipitated from the reaction solution, isolated, purified and analyzed.
Abstract:
Nanocrystals having an indium-based core and methods for making them and using them to construct core-shell nanocrystals are described. These core-shell nanocrystals are highly stable and provide higher quantum yields than known nanocrystals of similar composition, and they provide special advantages for certain applications because of their small size.
Abstract:
Disclosed herein is a method for the preparation of metal phosphide nanocrystals using a phosphite compound as a phosphorous precursor. More specifically, disclosed herein is a method for preparing metal phosphide nanocrystals by reacting a metal precursor with a phosphite compound in a solvent. A method is also provided for passivating a metal phosphide layer on the surface of a nanocrystal core by reacting a metal precursor with a phosphite compound in a solvent. The metal phosphide nanocrystals have uniform particle sizes and various shapes.
Abstract:
Disclosed herein is a method for the preparation of metal phosphide nanocrystals using a phosphite compound as a phosphorous precursor. More specifically, disclosed herein is a method for preparing metal phosphide nanocrystals by reacting a metal precursor with a phosphite compound in a solvent. A method is also provided for passivating a metal phosphide layer on the surface of a nanocrystal core by reacting a metal precursor with a phosphite compound in a solvent. The metal phosphide nanocrystals have uniform particle sizes and various shapes.
Abstract:
Nanoparticles including a molecular cluster compound incorporating ions from groups 12 and 16 of the periodic table, as well as a core semiconductor material incorporating ions from groups 13 and 15 of the periodic table, are fabricated. The core semiconductor material is provided on the molecular cluster compound.
Abstract:
The method for synthesizing indium phosphide nanoparticles using indium trichloride as an indium raw material and tris(dimethylamino)phosphine as a phosphorus raw material, includes a preparation step of mixing the indium raw material, the phosphorus raw material, an organic solvent having a boiling point of 170° C. or higher, and a particle surface ligand to obtain a mixture solution and a synthesis step of synthesizing the indium phosphide nanoparticles by heating the mixture solution to 150° C. or higher but lower than 170° C. In the method, the particle surface ligand is an aliphatic amine having a carbon number of 18 or more, and the indium trichloride is an anhydride.
Abstract:
Light-emitting materials are made from a porous light-emitting semiconductor having quantum dots (QDs) disposed within the pores. According to some embodiments, the QDs have diameters that are essentially equal in size to the width of the pores. The QDs are formed in the pores by exposing the porous semiconductor to gaseous QD precursor compounds, which react within the pores to yield QDs. According to certain embodiments, the pore size limits the size of the QDs produced by the gas-phase reactions. The QDs absorb light emitted by the light-emitting semiconductor material and reemit light at a longer wavelength than the absorbed light, thereby “down-converting” light from the semiconductor material.