Abstract:
A method for controlling a position of a floor of a carriage of a railway vehicle moving on rails, relative to a platform. The carriage includes a body including the floor, at least one bogie, and at least one suspension interposed between the body and the bogie. The method includes determining a level difference between the actual position of the carriage relative to the platform and an expected position of the carriage relative to the platform, adjusting a height of the suspension for compensating the determined level difference. Determining the level difference includes capturing an image of at least one predetermined pattern comprised on the platform with a camera borne by the body, comparing the captured image with a memorized reference image of the at least one pattern of the platform, and calculating a vertical displacement from the images to determine the level difference.
Abstract:
This invention is directed to a self-propelled elevator system having multiple motors or one motor, and methods for synchronizing said multiple motors. This invention is also directed to an elevator brake system to be used in said self-propelled elevator system or other types of elevators to increase their level of safety.
Abstract:
The object of the invention is an elevator arrangement, which comprises at least two elevator cars that are connected to each other with suspension ropes or corresponding and are configured to move simultaneously with each other and reciprocally in an elevator hoistway, and a hoisting machine provided with at least one traction sheave or corresponding. The arrangement comprises at least one compensation means for compensating positioning inaccuracies caused by loading of the elevator cars.
Abstract:
In an elevator apparatus, a guide rail has a plurality of unit rails that are vertically connected to each other. A car is provided with a rail joint detecting device mounted on the car, for detecting the presence/absence of a joint between each of the unit rails. The rail joint detecting device has a joint detecting portion for optically detecting the presence of the joint; and a joint determining portion for determining the presence/absence of the joint based on information from the joint detecting portion. Information on the presence/absence of the joint is outputted from the joint determining portion to a car position correcting circuit. In the car position correcting circuit, information on the position of the car is corrected based on the information on the presence/absence of the joint.
Abstract:
A system of sensing elevator car position is presented that dynamically compensates for problems due to frictional slippage of its mechanical connection and/or building settlement. The system comprises an elevator car within an elevator hoistway. An encoder is mounted within the elevator hoistway and mechanically connected to the elevator car. The mechanical connection drives the encoder which generates data indicative of the position of the elevator car. Either one of a position sensor and a position sensor actuator is mounted to a landing of the hoistway. The other one of the position sensor and position sensor actuator is mounted to the elevator car. The position sensor generates data indicative of the elevator car floor reaching a predetermined distance from the elevator landing when actuated by the position sensor actuator. An elevator position controller receives the data generated by both the position sensor and the encoder. The mechanical connection may include an elevator rope frictionally driving a governor sheave of an elevator speed governor system upon which the encoder is mounted.
Abstract:
An apparatus for determining if an elevator car is level with respect to a landing in a hoistway comprises a transceiver for transmitting a signal, a first reflector having a varying reflectance between a maximum reflectance end and a minimum reflectance end, a second reflector having a varying reflectance between a maximum reflectance end and a minimum reflectance end, and a processor. The first reflector transmits a first reflected signal in response to the signal transmitted by the transceiver and the second reflector transmits a second reflected signal in response to the signal transmitted by the transceiver. The first reflector and the second reflector are adjacently aligned such that the maximum reflectance end of the first reflector is adjacent to the minimum reflectance end of the second reflector, and the minimum reflectance end of the first reflector is adjacent to the maximum reflectance end of the second reflector. The processor determines if the elevator car is level with respect to the landing in response to the first and second reflected signals.
Abstract:
In an elevator wherein an elevator cage is repeatedly run among a plurality of floors by controlling a cage driving motor in accordance with a velocity command; a floor arrival error involved when the elevator cage has arrived at the floor is detected, and the velocity command for the subsequent operation is corrected in accordance with the floor arrival error, thereby to enhance the floor arrival precision.
Abstract:
A procedure for adjusting the stopping of an elevator as accurately as possible on desired level with the aid of the deceleration instruction (DR). From the elevator's deceleration instruction (DR) a sample is taken at the beginning and at the end of deceleration, these are compared with each other and the linearity of deceleration is adjusted on the basis of the result obtained. The invention also concerns an elevator deceleration measuring circuit for carrying out the procedure. The measuring circuit, connected to the deceleration instruction (DR) of the elevator, comprises a display unit such as for instance two light-emitting diodes (D4,D5) by which the result can be ascertained if the deceleration instruction is increasing or decreasing.
Abstract:
A position sensor disposed on an elevator car has a first rotatable shaft connected to a secondary winding of a transformer or a switch actuating member, and a second rotatable shaft coaxial with the first shaft and connected to a primary transformer winding or to a switch position changing member. A first roller engages a rod-shaped cam mounted at an angle to a guide rail for the car toward the end of the path of travel of the car to rotate the first shaft in a direction to decrease the voltage across the secondary winding or successively actuate the switches. If the car moves horizontally, the first shaft is rotated to change the voltage and a second roller engaging the rail rotates a second shaft to compensate for this change in voltage.