Abstract:
A normalizing system for use with a case former, the system's components function and use are provided. Components of the system include a frame that defines a blank magazine area and a case forming area. Case pickers within the blank magazine area are configured to engage and lift a top-most case blank from the magazine. The pickers transfer the blank to left and right clamp assemblies, which grasp respective edges of the blank and then advance the blank toward the case forming area along a linear pathway. Alignment sensors positioned across the pathway detect if the case blank is in alignment as determined by the value of the angle(s) that the leading edge of the blank forms where it intersects each of the alignment sensors. If misalignment is detected, servos which control the rate of advancement of the clamp assemblies, adjust that rate to bring the blank back into alignment.
Abstract:
Methods, devices, apparatus, and assemblies for converting fanfold material into packaging templates are disclosed. A converting system includes a converting machine that performs various conversion functions on the fanfold material. An infeed guide system directs the fanfold material from one or more stacks into the converting machine without folding, creasing, or otherwise compromising the fanfold material. The infeed guide system includes infeed guides with substantially S-shaped segments. The infeed guide system also includes a frame structure that substantially maintains the curvature of the substantially S-shaped segments within a desired range to prevent damage to or jamming of the fanfold material in the infeed guide system.
Abstract:
The present invention relates to a method and device for transferring cutouts (6), for manufacturing packaging boxes having polygonal cross-sections, from a magazine (3) from a vertical stack, consisting of at least one stack (4, 5) of cutouts made of a cardboard or corrugated cardboard sheet material comprising notches. The method and device of the invention involve locating the top cutout of the stack using a camera (10), preliminarily detaching the cutout from the remainder of the stack, gripping, by means of suction, the thus-located top cutout, moving said cutout by means of a robotic arm (17) and releasing same to a next station, for or prior to subsequent shaping, and repeating the above cycle of steps with the next top cutout.
Abstract:
A normalizing system for use with a case former, the system's components function and use are provided. Components of the system include a frame that defines a blank magazine area and a case forming area. Case pickers within the blank magazine area are configured to engage and lift a top-most case blank from the magazine. The pickers transfer the blank to left and right clamp assemblies, which grasp respective edges of the blank and then advance the blank toward the case forming area along a linear pathway. Alignment sensors positioned across the pathway detect if the case blank is in alignment as determined by the value of the angle(s) that the leading edge of the blank forms where it intersects each of the alignment sensors. If misalignment is detected, servos which control the rate of advancement of the clamp assemblies, adjust that rate to bring the blank back into alignment.
Abstract:
A system is claimed for forming a container from a tubular blank comprising a plurality of panels and flaps interconnected to provide a generally flattened tubular configuration. A first and second panels are provided with the second panel being rotatable relative to the first panel. The system may comprise a first engagement device for engaging the first panel and a second engagement device for engaging the second panel, and being located on a panel rotating apparatus operable to rotate the second panel from an orientation generally parallel to the first panel to a second orientation at an angle to the first panel. The generally flattened tubular blank may be reconfigured from a generally flattened configuration to an open configuration.
Abstract:
A system is described relating to the feeding of raw materials into a machine that converts the raw materials into a packaging template. The system may use raw packaging materials and supply the raw materials to a converting mechanism using an infeed wheel. The infeed wheel may rotate and have a number of edges that engage the raw materials. Raw materials of one form used may include fanfold material that has existing fold or score lines that define opposing boundaries of the fanfold material, but which allow separate layers to remain connected. As the infeed wheel rotates, the edges engage the raw materials, and can engage the existing fold or score lines. Some edges may engage at locations between existing fold or score lines, and can crease the raw materials.
Abstract:
A shipping method includes the steps of receiving stacks of flat die cut corrugated paperboard blanks from a corrugator or sheet plant; loading the stacks of blanks into a pallet assembly machine; folding the blanks together in the assembly machine to produce a corrugated paperboard pallet; and providing the pallets for shipping items to a receiver. The assembly machine folds the blanks using intermittent motion of the blanks through multiple folding sections in the assembly machine. The sections operate by positioning, clamping and folding the blanks using levers that are supported by rotary bearings and driven by pinned end mounted pneumatic cylinders. The assembly machine overcomes misalignment and shifting of the stacks of blanks by picking up single blanks from the top of the stacks using vacuum, and adjusting alignment of the blanks after being picked up but prior to being fed into the first folding section of the assembly machine.
Abstract:
The invention relates to a device for transporting objects, in particular packaging means, said device comprising a continuous conveying section (3) and a plurality of conveying assemblies (40) that circulate on the conveying section (3). Each conveying assembly (40) comprises a first conveying element (4) and a second conveying element (5) and each of said conveying elements (4, 5) can be driven individually and independently of one another. The conveying elements (4, 5) are designed to jointly transport one individual object (2).
Abstract:
Methods, devices, apparatus, and assemblies for converting fanfold material into packaging templates are disclosed. A converting system includes a converting machine that performs various conversion functions on the fanfold material. An infeed guide system directs the fanfold material from one or more stacks into the converting machine without folding, creasing, or otherwise compromising the fanfold material. The infeed guide system includes infeed guides with substantially S-shaped segments. The infeed guide system also includes a frame structure that substantially maintains the curvature of the substantially S-shaped segments within a desired range to prevent damage to or jamming of the fanfold material in the infeed guide system.
Abstract:
A personalized packaging production system includes an in-feed tray, an out-feed tray, a cutting table disposed intermediate the in-feed tray and the out-feed tray and an interchangeable cutting/creasing assembly. A sheet feeder is positioned between the in-feed tray and the cutting table to feed media sheets from the in-feed tray to the cutting table, and an exit nip is positioned between the out-feed tray and the cutting table to remove media sheets from the cutting table to the out-feed tray.