摘要:
An apparatus and computer readable storage medium are disclosed for supplying power to a load such as a plurality of light emitting diodes. A representative apparatus comprises a primary module, a first secondary module couplable to a first load, and a second secondary module couplable to a second load. The primary module comprises a transformer having a transformer primary. The first secondary module comprises a first transformer secondary magnetically coupled to the transformer primary, and the second secondary module comprises a second transformer secondary magnetically coupled to the transformer primary, with the second secondary module couplable through the first or second load to the first secondary module.
摘要:
Representative embodiments of the disclosure provide a system and apparatus for controlling an intensity and spectrum of light emitted from a solid state lighting system. The solid state lighting system has a first emitted spectrum at full intensity and at a selected temperature, with a first electrical biasing for the solid state lighting system producing a first wavelength shift, and a second electrical biasing for the solid state lighting system producing a second, opposing wavelength shift. Representative embodiments provide for receiving information designating a selected intensity level and a selected temperature and providing a combined first electrical biasing and second electrical biasing to the solid state lighting system to generate emitted light having the selected intensity level and having a second emitted spectrum within a predetermined variance of the first emitted spectrum over a predetermined range of temperatures.
摘要:
Current is provided to a segment of light emitting diodes in a plurality of segments of light emitting diodes. Embodiments generate a current and sequentially and separately switch the current to each segment of light emitting diodes in the plurality of segments of light emitting diodes for a corresponding period of time, where the corresponding period of time is based on an average current of the generated current.
摘要:
Representative embodiments of the invention provide a system, apparatus, and method of controlling an intensity and spectrum of light emitted from a solid state lighting system. The solid state lighting system has a first emitted spectrum at a full intensity level and at a selected temperature, with a first electrical biasing for the solid state lighting system producing a first wavelength shift, and a second electrical biasing for the solid state lighting system producing a second, opposing wavelength shift. Representative embodiments provide for receiving information designating a selected intensity level or a selected temperature; and providing a combined first electrical biasing and second electrical biasing to the solid state lighting system to generate emitted light having the selected intensity level and having a second emitted spectrum within a predetermined variance of the first emitted spectrum over a predetermined range of temperatures.
摘要:
An apparatus, method, and system are disclosed for providing AC line power to lighting devices such as light emitting diodes (“LEDs”). A representative apparatus comprises: a plurality of LEDs coupled in series to form a first plurality of segments of LEDs coupled in series; a plurality of switches coupled to the plurality of segments of LEDs to switch a selected segment into or out of a series LED current path in response to a control signal; a memory; and a controller which, in response to a first parameter and during a first part of an AC voltage interval, determines and stores in the memory a value of a second parameter and generates a first control signal to switch a corresponding segment of LEDs into the series LED current path, and during a second part of the AC voltage interval, when a current value of the second parameter is substantially equal to the stored value, generates a second control signal to switch a corresponding segment of LEDs out of the first series LED current path.
摘要:
Representative embodiments of the disclosure provide a system, apparatus, and method of controlling an intensity and spectrum of light emitted from a solid state lighting system. The solid state lighting system has a first emitted spectrum at full intensity and at a selected temperature, with a first electrical biasing for the solid state lighting system producing a first wavelength shift, and a second electrical biasing for the solid state lighting system producing a second, opposing wavelength shift. Representative embodiments provide for receiving information designating a selected intensity level or a selected temperature and providing a combined first electrical biasing and second electrical biasing to the solid state lighting system to generate emitted light having the selected intensity level and having a second emitted spectrum within a predetermined variance of the first emitted spectrum over a predetermined range of temperatures.
摘要:
A representative apparatus controls current supplied to solid state lighting, such as light emitting diodes. The apparatus includes an inductor, a memory adapted to store a plurality of current parameters and a controller. The controller is configured to control a power source to supply current to the inductor to start an energizing cycle, monitor an inductor current level, reduce the inductor current level in response to the inductor current level reaching a predetermined peak inductor current, and increase the inductor current level in response to the inductor current reaching a predetermined minimum current is reached. In at least one embodiment, the controller modulates a current provided to the solid state lighting such that a DC average current level is substantially proportional to one-half of a sum of the predetermined peak current level and the predetermined minimum current level.
摘要:
Representative embodiments provide an apparatus, system, and method for power conversion to provide power to solid state lighting, and which may be coupled to a first switch, such as a dimmer switch. A representative system for power conversion comprises: a switching power supply comprising a second, power switch; solid state lighting coupled to the switching power supply; a voltage sensor; a current sensor; a memory; a first adaptive interface circuit to provide a resistive impedance to the first switch and conduct current from the first switch in a default mode; a second adaptive interface circuit to create a resonant process when the first switch turns on; and a controller to modulate the second adaptive interface circuit when the first switch turns on to provide a current path during the resonant process of the switching power supply.
摘要:
A representative apparatus embodiment provides for controlling current supplied to solid state lighting, such as light emitting diodes. A representative apparatus comprises a memory adapted to store a plurality of current parameters, and a control circuit adapted to modulate an energizing cycle time period for providing a substantially constant DC average current to the solid state lighting in response to a selected current parameter from the plurality of current parameters. In a representative embodiment, the control circuit modulates a current provided to the solid state lighting in response to a predetermined minimum current level (IMIN) parameter and a predetermined peak current level (IP) parameter, such that the DC average current level (IO) is substantially proportional to one-half of a sum of a predetermined peak current level (IP) and a predetermined minimum current level IMIN ( I O ∝ I P + I MI N 2 ) .
摘要翻译:代表性的装置实施例提供了控制提供给诸如发光二极管之类的固态照明的电流。 代表性装置包括适于存储多个当前参数的存储器,以及控制电路,其适于调整激励周期时间段,以响应于来自多个的所选择的当前参数而向固态照明提供基本恒定的DC平均电流 的当前参数。 在代表性实施例中,控制电路响应于预定的最小电流电平(IMIN)参数和预定的峰值电流电平(IP)参数来调制提供给固态照明的电流,使得DC平均电流电平(IO) 基本上与预定的峰值电流电平(IP)和预定的最小电流电平IMIN(IOαIP + I MI,N 2)的和的一半成比例。
摘要:
A system drives one or a plurality of LEDs, regulating their brightness by controlling the LEDs' average current or voltage. The system includes a switching power converter and an integrated digital regulator with at least one of electrical, thermal, and optical feedbacks. The regulator is constructed as a hysteretic peak current mode controller for continuous mode of operation of the power converter. For a discontinuous mode of operation of the power converter, a pulse averaging sliding mode control is used. Average LED current is measured by integrating LED pulse current at off time and hysteretically adjusting on time of the power switch. An input battery is protected from discharging at abnormally low impedance of the output.